7 research outputs found

    The Myopathic Form Of Coenzyme Q10 Deficiency Is Caused By Mutations In The Electron-Transferring-Flavoprotein Dehydrogenase (Etfdh) Gene

    No full text
    Coenzyme Q10 (CoQ10) deficiency is an autosomal recessive disorder with heterogenous phenotypic manifestations and genetic background. We describe seven patients from five independent families with an isolated myopathic phenotype of CoQ10 deficiency.The clinical, histological and biochemical presentation of our patients was very homogenous. All patients presented with exercise intolerance, fatigue, proximal myopathy and high serum CK. Muscle histology showed lipid accumulation and subtle signs of mitochondrial myopathy. Biochemical measurement of muscle homogenates showed severely decreased activities of respiratory chain complexes I and II + III, while complex IV (COX) was moderately decreased. CoQ10 was significantly decreased in the skeletal muscle of all patients.Tandem mass spectrometry detected multiple acyl-CoA deficiency, leading to the analysis of the electron-transferring-flavoprotein dehydrogenase (ETFDH) gene, previously shown to result in another metabolic disorder, glutaric aciduria type 11 (GAII). All of our patients carried autosomal recessive mutations in ETFDH, suggesting that ETFDH deficiency leads to a secondary CoQ10 deficiency. Our results indicate that the late-onset form of GAII and the myopathic form of CoQ10 deficiency are allelic diseases. Since this condition is treatable, correct diagnosis is of the utmost importance and should be considered both in children and in adults. We suggest to give patients both CoQ10 and riboflavin supplementation, especially for long-term treatment.WoSScopu

    Cystic renal dysplasia as a leading sign of inherited metabolic disease.

    No full text
    Contains fulltext : 52537.pdf (publisher's version ) (Closed access)Glutaric acidemia type II and carnitine palmitoyltransferase type II deficiency are rare, but potentially treatable, inherited metabolic diseases. Hallmarks of the early onset form of both conditions are renal abnormalities and neonatal metabolic crisis. In this article, we report on two newborns with cystic renal dysplasia as a leading sign of these metabolic diseases. We focus on the clinical presentation and discuss the diagnostic tests and the available therapeutic options. We conclude that prenatal diagnosis of cystic renal dysplasia should alert the physician to the possibility of these metabolic diseases. This knowledge should prompt careful observation and, where necessary, early intervention during the postnatal period of catabolism
    corecore