4 research outputs found

    Deep-pretrained-FWI: combining supervised learning with physics-informed neural network

    Full text link
    An accurate velocity model is essential to make a good seismic image. Conventional methods to perform Velocity Model Building (VMB) tasks rely on inverse methods, which, despite being widely used, are ill-posed problems that require intense and specialized human supervision. Convolutional Neural Networks (CNN) have been extensively investigated as an alternative to solve the VMB task. Two main approaches were investigated in the literature: supervised training and Physics-Informed Neural Networks (PINN). Supervised training presents some generalization issues since structures, and velocity ranges must be similar in training and test set. Some works integrated Full-waveform Inversion (FWI) with CNN, defining the problem of VMB in the PINN framework. In this case, the CNN stabilizes the inversion, acting like a regularizer and avoiding local minima-related problems and, in some cases, sparing an initial velocity model. Our approach combines supervised and physics-informed neural networks by using transfer learning to start the inversion. The pre-trained CNN is obtained using a supervised approach based on training with a reduced and simple data set to capture the main velocity trend at the initial FWI iterations. We show that transfer learning reduces the uncertainties of the process, accelerates model convergence, and improves the final scores of the iterative process.Comment: Paper present at machine Learning and the Physical Sciences workshop, NeurIPS 202

    Deep-tomography: iterative velocity model building with deep learning

    Full text link
    The accurate and fast estimation of velocity models is crucial in seismic imaging. Conventional methods, like Tomography and Full-Waveform Inversion (FWI), obtain appropriate velocity models; however, they require intense and specialized human supervision and consume much time and computational resources. In recent years, some works investigated deep learning(DL) algorithms to obtain the velocity model directly from shots or migrated angle panels, obtaining encouraging predictions of synthetic models. This paper proposes a new flow to increase the complexity of velocity models recovered with DL. Inspired by the conventional geophysical velocity model building methods, instead of predicting the entire model in one step, we predict the velocity model iteratively. We implement the iterative nature of the process when, for each iteration, we train the DL algorithm to determine the velocity model with a certain level of precision/resolution for the next iteration; we name this process as Deep-Tomography. Starting from an initial model that roughly approaches the true model, the Deep-Tomography is able to predict an appropriate final model, even in complete unseen data, like the Marmousi model.Comment: 27 pages, 9 figures. First manuscript version submitted to Geophysical Journal International in February 202
    corecore