2,182 research outputs found
Asteroseismology of the Transiting Exoplanet Host HD 17156 with HST FGS
Observations conducted with the Fine Guidance Sensor on Hubble Space
Telescope (HST) providing high cadence and precision time-series photometry
were obtained over 10 consecutive days in December 2008 on the host star of the
transiting exoplanet HD 17156b. During this time 10^12 photons (corrected for
detector deadtime) were collected in which a noise level of 163 parts per
million per 30 second sum resulted, thus providing excellent sensitivity to
detection of the analog of the solar 5-minute p-mode oscillations. For HD 17156
robust detection of p-modes supports determination of the stellar mean density
of 0.5301 +/- 0.0044 g/cm^3 from a detailed fit to the observed frequencies of
modes of degree l = 0, 1, and 2. This is the first star for which direct
determination of the mean stellar density has been possible using both
asteroseismology and detailed analysis of a transiting planet light curve.
Using the density constraint from asteroseismology, and stellar evolution
modeling results in M_star = 1.285 +/- 0.026 solar, R_star = 1.507 +/- 0.012
solar, and a stellar age of 3.2 +/- 0.3 Gyr.Comment: Accepted by ApJ; 16 pages, 18 figure
Characteristics of solar-like oscillations in red giants observed in the CoRoT exoplanet field
Observations during the first long run (~150 days) in the exo-planet field of
CoRoT increase the number of G-K giant stars for which solar-like oscillations
are observed by a factor of 100. This opens the possibility to study the
characteristics of their oscillations in a statistical sense. We aim to
understand the statistical distribution of the frequencies of maximum
oscillation power (nu_max) in red giants and to search for a possible
correlation between nu_max and the large separation (delta_nu). The nu_max
distribution shows a pronounced peak between 20 - 40 microHz. For about half of
the stars we obtain delta_nu with at least two methods. The correlation between
nu_max and delta_nu follows the same scaling relation as inferred for
solar-like stars. The shape of the nu_max distribution can partly be explained
by granulation at low frequencies and by white noise at high frequencies, but
the population density of the observed stars turns out to be also an important
factor. From the fact that the correlation between delta_nu and nu_max for red
giants follows the same scaling relation as obtained for sun-like stars, we
conclude that the sound travel time over the pressure scale height of the
atmosphere scales with the sound travel time through the whole star
irrespective of evolution.Comment: Accepted for publication in Astronomy and Astrophysics (CoRoT special
issue), 5 pages, 7 figures and 1 tabl
Solar-like oscillations in the metal-poor subgiant nu Indi: II. Acoustic spectrum and mode lifetime
Convection in stars excites resonant acoustic waves which depend on the sound
speed inside the star, which in turn depends on properties of the stellar
interior. Therefore, asteroseismology is an unrivaled method to probe the
internal structure of a star. We made a seismic study of the metal-poor
subgiant star nu Indi with the goal of constraining its interior structure. Our
study is based on a time series of 1201 radial velocity measurements spread
over 14 nights obtained from two sites, Siding Spring Observatory in Australia
and ESO La Silla Observatory in Chile. The power spectrum of the high precision
velocity time series clearly presents several identifiable peaks between 200
and 500 uHz showing regularity with a large and small spacing of 25.14 +- 0.09
uHz and 2.96 +- 0.22 uHz at 330 uHz. Thirteen individual modes have been
identified with amplitudes in the range 53 to 173 cm/s. The mode damping time
is estimated to be about 16 days (1-sigma range between 9 and 50 days),
substantially longer than in other stars like the Sun, the alpha Cen system or
the giant xi Hya.Comment: 5 pages, 7 figures, A&A accepte
Hot Electron Capture Dissociation Distinguishes Leucine from Isoleucine in a Novel Hemoglobin Variant, Hb Askew, β54(D5)Val→Ile
Population migration has led to the global dispersion of human hemoglobinopathies and has precipitated a need for their identification. An effective mass spectrometry-based procedure involves analysis of the intact α- and β-globin chains to determine their mass, followed by location of the variant amino acid residue by direct analysis of the enzymatically digested chains and low-energy collision induced dissociation of the variant peptide. Using this procedure, a variant was identified as either β54Val→Leu or β54Val→Ile, since the amino acids leucine and isoleucine cannot be distinguished using low-energy collisions. Here, we describe how hot electron capture dissociation on a Fourier transform-ion cyclotron resonance mass spectrometer was used to distinguish isoleucine from leucine and identify the mutation as β54(D5)Val→Ile. This is a novel variant, and we have named it Hb Askew
Solar-like oscillations in the G8 V star tau Ceti
We used HARPS to measure oscillations in the low-mass star tau Cet. Although
the data were compromised by instrumental noise, we have been able to extract
the main features of the oscillations. We found tau Cet to oscillate with an
amplitude that is about half that of the Sun, and with a mode lifetime that is
slightly shorter than solar. The large frequency separation is 169 muHz, and we
have identified modes with degrees 0, 1, 2, and 3. We used the frequencies to
estimate the mean density of the star to an accuracy of 0.45% which, combined
with the interferometric radius, gives a mass of 0.783 +/- 0.012 M_sun (1.6%).Comment: accepted for publication in A&
Estimating stellar mean density through seismic inversions
Determining the mass of stars is crucial both to improving stellar evolution
theory and to characterising exoplanetary systems. Asteroseismology offers a
promising way to estimate stellar mean density. When combined with accurate
radii determinations, such as is expected from GAIA, this yields accurate
stellar masses. The main difficulty is finding the best way to extract the mean
density from a set of observed frequencies.
We seek to establish a new method for estimating stellar mean density, which
combines the simplicity of a scaling law while providing the accuracy of an
inversion technique.
We provide a framework in which to construct and evaluate kernel-based linear
inversions which yield directly the mean density of a star. We then describe
three different inversion techniques (SOLA and two scaling laws) and apply them
to the sun, several test cases and three stars.
The SOLA approach and the scaling law based on the surface correcting
technique described by Kjeldsen et al. (2008) yield comparable results which
can reach an accuracy of 0.5 % and are better than scaling the large frequency
separation. The reason for this is that the averaging kernels from the two
first methods are comparable in quality and are better than what is obtained
with the large frequency separation. It is also shown that scaling the large
frequency separation is more sensitive to near-surface effects, but is much
less affected by an incorrect mode identification. As a result, one can
identify pulsation modes by looking for an l and n assignment which provides
the best agreement between the results from the large frequency separation and
those from one of the two other methods. Non-linear effects are also discussed
as is the effects of mixed modes. In particular, it is shown that mixed modes
bring little improvement as a result of their poorly adapted kernels.Comment: Accepted for publication in A&A, 20 pages, 19 figure
The Octave (Birmingham - Sheffield Hallam) automated pipeline for extracting oscillation parameters of solar-like main-sequence stars
The number of main-sequence stars for which we can observe solar-like
oscillations is expected to increase considerably with the short-cadence
high-precision photometric observations from the NASA Kepler satellite. Because
of this increase in number of stars, automated tools are needed to analyse
these data in a reasonable amount of time. In the framework of the asteroFLAG
consortium, we present an automated pipeline which extracts frequencies and
other parameters of solar-like oscillations in main-sequence and subgiant
stars. The pipeline uses only the timeseries data as input and does not require
any other input information. Tests on 353 artificial stars reveal that we can
obtain accurate frequencies and oscillation parameters for about three quarters
of the stars. We conclude that our methods are well suited for the analysis of
main-sequence stars, which show mainly p-mode oscillations.Comment: accepted by MNRA
Testing the asymptotic relation for period spacings from mixed modes of red giants observed with the Kepler mission
Dipole mixed pulsation modes of consecutive radial order have been detected
for thousands of low-mass red-giant stars with the NASA space telescope Kepler.
Such modes have the potential to reveal information on the physics of the deep
stellar interior. Different methods have been proposed to derive an observed
value for the gravity-mode period spacing, the most prominent one relying on a
relation derived from asymptotic pulsation theory applied to the gravity-mode
character of the mixed modes. Our aim is to compare results based on this
asymptotic relation with those derived from an empirical approach for three
pulsating red-giant stars. We developed a data-driven method to perform
frequency extraction and mode identification. Next, we used the identified
dipole mixed modes to determine the gravity-mode period spacing by means of an
empirical method and by means of the asymptotic relation. In our methodology,
we consider the phase offset, , of the asymptotic
relation as a free parameter. Using the frequencies of the identified dipole
mixed modes for each star in the sample, we derived a value for the
gravity-mode period spacing using the two different methods. These differ by
less than 5%. The average precision we achieved for the period spacing derived
from the asymptotic relation is better than 1%, while that of our data-driven
approach is 3%. Good agreement is found between values for the period spacing
derived from the asymptotic relation and from the empirical method.
Full abstract in PDF file.Comment: 14 pages, 13 figures, accepted for publication in A&
- …