33 research outputs found

    A finite loop space not rationally equivalent to a compact Lie group

    Full text link
    We construct a connected finite loop space of rank 66 and dimension 1254 whose rational cohomology is not isomorphic as a graded vector space to the rational cohomology of any compact Lie group, hence providing a counterexample to a classical conjecture. Aided by machine calculation we verify that our counterexample is minimal, i.e., that any finite loop space of rank less than 66 is in fact rationally equivalent to a compact Lie group, extending the classical known bound of 5.Comment: 8 page

    Loss-of-activity-mutation in the cardiac chloride-bicarbonate exchanger AE3 causes short QT syndrome

    Get PDF
    Mutations in potassium and calcium channel genes have been associated with cardiac arrhythmias. Here, Jensen et al. show that an anion transporter chloride-bicarbonate exchanger AE3 is also responsible for the genetically-induced mechanism of cardiac arrhythmia, suggesting new therapeutic targets for this diseas

    Tendon collagen synthesis declines with immobilization in elderly humans:no effect of anti-inflammatory medication

    Get PDF
    Nonsteroidal anti-inflammatory drugs (NSAIDs) are used as pain killers during periods of unloading caused by traumatic occurrences or diseases. However, it is unknown how tendon protein turnover and mechanical properties respond to unloading and subsequent reloading in elderly humans, and whether NSAID treatment would affect the tendon adaptations during such periods. Thus we studied human patellar tendon protein synthesis and mechanical properties during immobilization and subsequent rehabilitating resistance training and the influence of NSAIDs upon these parameters. Nineteen men (range 60–80 yr) were randomly assigned to NSAIDs (ibuprofen 1,200 mg/day; Ibu) or placebo (Plc). One lower limb was immobilized in a cast for 2 wk and retrained for 6 wk. Tendon collagen protein synthesis, mechanical properties, size, expression of genes related to collagen turnover and remodeling, and signal intensity (from magnetic resonance imaging) were investigated. Tendon collagen synthesis decreased ( P &lt; 0.001), whereas tendon mechanical properties and size were generally unchanged with immobilization, and NSAIDs did not influence this. Matrix metalloproteinase-2 mRNA tended to increase ( P &lt; 0.1) after immobilization in both groups, whereas scleraxis mRNA decreased with inactivity in the Plc group only ( P &lt; 0.05). In elderly human tendons, collagen protein synthesis decreased after 2 wk of immobilization, whereas tendon stiffness and modulus were only marginally reduced, and NSAIDs had no influence upon this. This indicates an importance of mechanical loading for maintenance of tendon collagen turnover. However, reduced collagen production induced by short-term unloading may only marginally affect tendon mechanical properties in elderly individuals.NEW &amp; NOTEWORTHY In elderly humans, 2 wk of inactivity reduces tendon collagen protein synthesis, while tendon stiffness and modulus are only marginally reduced, and NSAID treatment does not affect this. This indicates that mechanical loading is important for maintenance of tendon collagen turnover and that changes in collagen turnover induced by short-term immobilization may only have minor impact on the internal structures that are essential for mechanical properties in elderly tendons.</jats:p

    Recurring dynamically-induced thinning during 1985-2010 on Upernavik Isstrøm, West Greenland

    Get PDF
    This is the publisher's version, also available electronically from "http://onlinelibrary.wiley.com".1] Many glaciers along the southeast and northwest coasts of Greenland have accelerated, increasing the ice sheet's contribution to global sea-level rise. In this article, we map elevation changes on Upernavik Isstrøm (UI), West Greenland, during 2003to 2009 using high-resolution ice, cloud and land elevation satellite laser altimeter data supplemented with altimeter surveys from NASA's Airborne Topographic Mapper during 2002 to 2010. To assess thinning prior to 2002, we analyze aerial photographs from 1985. We document at least two distinct periods of dynamically induced ice loss during 1985 to 2010 characterized by a rapid retreat of the calving front, increased ice speed, and lowering of the ice surface. The first period occurred before 1991, whereas the latter occurred during 2005 to 2009. Analyses of air and sea-surface temperature suggest a combination of relatively warm air and ocean water as a potential trigger for the dynamically induced ice loss. We estimate a total catchment-wide ice-mass loss of UI caused by the two events of 72.3 ± 15.8 Gt during 1985 to 2010, whereas the total melt-induced ice-mass loss during this same period is 19.8 ± 2.8 Gt. Thus, 79% of the total ice-mass loss of the UI catchment was caused by ice dynamics, indicating the importance of including dynamically induced ice loss in the total mass change budget of the Greenland ice sheet

    Anisotropy enhanced X-ray scattering from solvated transition metal complexes

    Full text link
    Time-resolved X-ray scattering patterns from photoexcited molecules in solution are in many cases anisotropic at the ultrafast time scales accessible at X-ray Free Electron Lasers (XFELs). This anisotropy arises from the interaction of a linearly polarized UV-vis pump laser pulse with the sample, which induces anisotropic structural changes that can be captured by femtosecond X-ray pulses. In this work we describe a method for quantitative analysis of the anisotropic scattering signal arising from an ensemble of molecules and we demonstrate how its use can enhance the structural sensitivity of the time-resolved X-ray scattering experiment. We apply this method on time-resolved X-ray scattering patterns measured upon photoexcitation of a solvated di-platinum complex at an XFEL and explore the key parameters involved. We show that a combined analysis of the anisotropic and isotropic difference scattering signals in this experiment allows a more precise determination of the main photoinduced structural change in the solute, i.e. the change in Pt-Pt bond length, and yields more information on the excitation channels than the analysis of the isotropic scattering only. Finally, we discuss how the anisotropic transient response of the solvent can enable the determination of key experimental parameters such as the Instrument Response Function.Comment: Accepted for publication in Journal of Synchrotron Radiatio

    Atomistic characterization of the active-site solvation dynamics of a model photocatalyst

    Get PDF
    The interactions between the reactive excited state of molecular photocatalysts and surrounding solvent dictate reaction mechanisms and pathways, but are not readily accessible to conventional optical spectroscopic techniques. Here we report an investigation of the structural and solvation dynamics following excitation of a model photocatalytic molecular system [Ir 2 (dimen) 4 ] 2+, where dimen is para-diisocyanomenthane. The time-dependent structural changes in this model photocatalyst, as well as the changes in the solvation shell structure, have been measured with ultrafast diffuse X-ray scattering and simulated with Born-Oppenheimer Molecular Dynamics. Both methods provide direct access to the solute-solvent pair distribution function, enabling the solvation dynamics around the catalytically active iridium sites to be robustly characterized. Our results provide evidence for the coordination of the iridium atoms by the acetonitrile solvent and demonstrate the viability of using diffuse X-ray scattering at free-electron laser sources for studying the dynamics of photocatalysis

    Spin-state studies with XES and RIXS: From static to ultrafast

    Get PDF
    We report on extending hard X-ray emission spectroscopy (XES) along with resonant inelastic X-ray scattering (RIXS) to study ultrafast phenomena in a pump-probe scheme at MHz repetition rates. The investigated systems include low-spin (LS) Fe-II complex compounds, where optical pulses induce a spin-state transition to their (sub)nanosecond-lived high-spin (HS) state. Time-resolved XES clearly reflects the spin-state variations with very high signal-to-noise ratio, in agreement with HS-LS difference spectra measured at thermal spin crossover, and reference HS-LS systems in static experiments, next to multiplet calculations. The 1s2p RIXS, measured at the Fe Is pre-edge region, shows variations after laser excitation, which are consistent with the formation of the HS state. Our results demonstrate that X-ray spectroscopy experiments with overall rather weak signals, such as RIXS, can now be reliably exploited to study chemical and physical transformations on ultrafast time scales. (C) 2012 Elsevier B.V. All rights reserved

    The 3’UTRs of Myelin Basic Protein mRNAs Regulate Transport, Local Translation and Sensitivity to Neuronal Activity in Zebrafish

    No full text
    Formation of functional myelin sheaths within the central nervous system depends on expression of myelin basic protein (MBP). Following process extension and wrapping around axonal segments, this highly basic protein is required for compaction of the multi-layered membrane sheath produced by oligodendrocytes. MBP is hypothesized to be targeted to the membrane sheath by mRNA transport and local translation, which ensures that its expression is temporally and spatially restricted. The mechanistic details of how this might be regulated are still largely unknown, in particular because a model system that allows this process to be studied in vivo is lacking. We here show that the expression of the zebrafish MBP orthologs, mbpa and mbpb, is developmentally regulated, and that expression of specific mbpa isoforms is restricted to the peripheral nervous system. By analysis of transgenic zebrafish, which express a fluorescent reporter protein specifically in myelinating oligodendrocytes, we demonstrate that both mbpa and mbpb include a 3’UTR sequence, by which mRNA transport and translation is regulated in vivo. Further functional analysis suggests that: (1) the 3’UTRs delay the onset of protein expression; and that (2) several regulatory elements contribute to targeting of the mbp mRNA to the myelin sheath. Finally, we show that a pharmacological compound known to enhance neuronal activity stimulates the translation of Mbp in zebrafish in a 3’UTR-dependent manner. A similar effect was obtained following stimulation with a TrkB receptor agonist, and cell-based assays further confirmed that the receptor ligand, BDNF, in combination with other signals reversed the inhibitory effect of the 3’UTR on translation
    corecore