49 research outputs found

    LINE-1 Hypomethylation in a Choline-Deficiency-Induced Liver Cancer in Rats: Dependence on Feeding Period

    Get PDF
    Chronic feeding of methyl-donor (methionine, choline, folic acid, and vitamin B12) deficient diet induces hepatocellular carcinoma formation in rats. Previous studies have shown that promoter CpG islands in various cancer-related genes are aberrantly methylated in this model. Moreover, the global genome in methyl-donor-deficient diet fed rats contains a lesser amount of 5-methylcytosine than control livers. It is speculated that more than 90% of all 5-methylcytosines lie within the CpG islands of the transposons, including the long/short interspersed nucleotide elements (LINE and SINE). It is considered that the 5-methylcytosines in LINE-1 limit the ability of retrotransposons to be activated and transcribed; therefore, the extent of hypomethylation of LINE-1 could be a surrogate marker for aberrant methylation in other tumor-related genes as well as genome instability. Additionally, LINE-1 methylation status has been shown to be a good indicator of genome-wide methylation. In this study, we determined cytosine methylation status in the LINE-1 repetitive sequences of rats fed a choline-deficient (CD) diet for various durations and compared these with rats fed a choline-sufficient (CS) diet. The methylation status of LINE-1 was assessed by the combined bisulfite restriction analysis (COBRA) method, where the amount of bisulfite-modified and RsaI-cleaved DNA was quantified using gel electrophoresis. Progressive hypomethylation was observed in LINE-1 of CD livers as a function of feeding time; that is, the amount of cytosine in total cytosine (methylated and unmethylated) increased from 11.1% (1 week) to 19.3% (56 weeks), whereas in the control CS livers, it increased from 9.2% to 12.9%. Hypomethylation in tumor tissues was slightly higher (6%) than the nontumorous surrounding tissue. The present result also indicates that age is a factor influencing the extent of cytosine methylation

    SGLT2阻害薬であるイプラグリフロジンは2型糖尿病自然発症モデルであるOLETFラットにおいて肝線維化進展を抑制する。

    Get PDF
    BACKGROUND: It is widely understood that insulin resistance (IR) critically correlates with the development of liver fibrosis in several types of chronic liver injuries. Several experiments have proved that anti-IR treatment can alleviate liver fibrosis. Sodium-glucose cotransporter 2 (SGLT2) inhibitors comprise a new class of antidiabetic agents that inhibit glucose reabsorption in the renal proximal tubules, improving IR. The aim of this study was to elucidate the effect of an SGLT2 inhibitor on the development of liver fibrosis using obese diabetic Otsuka Long-Evans Tokushima fatty (OLETF) rats and their littermate nondiabetic Long-Evans Tokushima Otsuka (LETO) rats. METHODS: Male OLETF and LETO rats were intraperitoneally injected with porcine serum twice a week for 12 weeks to augment liver fibrogenesis. Different concentrations of ipragliflozin (3 and 6 mg/kg) were orally administered during the experimental period. Serological and histological data were examined at the end of the experimental period. The direct effect of ipragliflozin on the proliferation of a human hepatic stellate cell (HSC) line, LX-2, was also evaluated in vitro. RESULTS: OLETF rats, but not LETO rats, received 12 weeks of porcine serum injection to induce severe fibrosis. Treatment with ipragliflozin markedly attenuated the development of liver fibrosis and expression of hepatic fibrosis markers, such as alpha smooth muscle actin, collagen 1A1, and transforming growth factor beta (TGF-β), and improved IR in a dose-dependent manner in OLETF rats. In contrast, the proliferation of LX-2 in vitro was not affected, suggesting that ipragliflozin had no significant direct effect on the proliferation of HSCs. CONCLUSION: In conclusion, our dataset suggests that an SGLT2 inhibitor could alleviate the development of liver fibrosis by improving IR in naturally diabetic rats. This may provide the basis for creating new therapeutic strategies for chronic liver injuries with IR.博士(医学)・甲第665号・平成29年3月15日© Japanese Society of Gastroenterology 2016The final publication is available at Springer via http://dx.doi.org/10.1007/s00535-016-1200-6

    フルクトースの経口投与はラット脂肪性肝炎モデルにおいて腸管透過性亢進作用を介して肝線維化および肝発癌を悪化させる

    Get PDF
    Recent reports have revealed the impact of a western diet containing large amounts of fructose on the pathogenesis of non-alcoholic steatohepatitis (NASH). Fructose exacerbates hepatic inflammation in NASH by inducing increasing intestinal permeability. However, it is not clear whether fructose contributes to the progression of liver fibrosis and hepatocarcinogenesis in NASH. The aim of this study was to investigate the effect of fructose intake on NASH in a rat model. A choline-deficient/L-amino acid diet was fed to F344 rats to induce NASH. Fructose was administrated to one group in the drinking water. The development of liver fibrosis and hepatocarcinogenesis were evaluated histologically. Oral fructose administration exacerbated liver fibrosis and increased the number of preneoplastic lesions positive for glutathione S-transferase placental form. Fructose-treated rats had significantly higher expression of hepatic genes related to toll-like receptor-signaling, suggesting that fructose consumption increased signaling in this pathway, leading to the progression of NASH. We confirmed that intestinal permeability was significantly higher in fructose-treated rats, as evidenced by a loss of intestinal tight junction proteins. Fructose exacerbated both liver fibrosis and hepatocarcinogenesis by increasing intestinal permeability. This observation strongly supports the role of endotoxin in the progression of NASH.博士(医学)・乙第1432号・令和元年9月27日Copyright © 2018 Impact Journals, LLCCopyright © Seki et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License 3.0 (CC BY 3.0 https://creativecommons.org/licenses/by/3.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

    肝線維化に対するファルネソイドX受容体アゴニストとジペプチジルペプチダーゼ-4阻害薬の併用効果

    Get PDF
    Aim: Non-alcoholic steatohepatitis (NASH) has a broad clinicopathological spectrum (inflammation to severe fibrosis). The farnesoid X receptor agonist obeticholic acid (OCA) ameliorates the histological features of NASH; satisfactory antifibrotic effects have not yet been reported. Here, we investigated the combined effects of OCA + a dipeptidyl peptidase-4 inhibitor (sitagliptin) on hepatic fibrogenesis in a rat model of NASH. Methods: Fifty Fischer 344 rats were fed a choline-deficient L-amino-acid-defined (CDAA) diet for 12 weeks. The in vitro and in vivo effects of OCA + sitagliptin were assessed along with hepatic fibrogenesis, lipopolysaccharide-Toll-like receptor 4 (TLR4) regulatory cascade and intestinal barrier function. Direct inhibitory effects of OCA + sitagliptin on activated hepatic stellate cells (Ac-HSCs) were assessed in vitro. Results: Treatment with OCA + sitagliptin potentially inhibited hepatic fibrogenesis along with Ac-HSC proliferation and hepatic transforming growth factor (TGF)-β1, α1(I)-procollagen, and tissue inhibitor of metalloproteinase-1 (TIMP-1) mRNA expression and hydroxyproline levels. Obeticholic acid inhibited hepatic TLR4 expression and increased hepatic matrix metalloproteinase-2 expression. Obeticholic acid decreased intestinal permeability by ameliorating CDAA diet-induced zonula occludens-1 disruption, whereas sitagliptin directly inhibited Ac-HSC proliferation. The in vitro suppressive effects of OCA + sitagliptin on TGF-β1 and α1(I)-procollagen mRNA expression and p38 phosphorylation in Ac-HSCs were almost consistent. Sitagliptin directly inhibited the regulation of Ac-HSC. Conclusions: Treatment with OCA + sitagliptin synergistically affected hepatic fibrogenesis by counteracting endotoxemia induced by intestinal barrier dysfunction and suppressing Ac-HSC proliferation. Thus, OCA + sitagliptin could be a promising therapeutic strategy for NASH.博士(医学)・甲第737号・令和2年3月16日© 2019 The Japan Society of HepatologyThis is the peer reviewed version of the following article: [https://onlinelibrary.wiley.com/doi/full/10.1111/hepr.13385], which has been published in final form at [https://doi.org/10.1111/hepr.13385]. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions

    Purification, molecular cloning, and some properties of a manganese-containing superoxide dismutase from Japanese flounder (Paralichthys olivaceus).

    Get PDF
    Manganese-superoxide dismutase (Mn-SOD) from Japanese flounder (Paralichthys olivaceus) hepatopancreas has been purified with high purification (781-fold) and recovery (10.8%). The molecular mass of the purified enzyme was estimated to be 26kDa by SDS-PAGE under reducing conditions. In activity staining by native-PAGE, the Japanese flounder Mn-SOD gave three active bands and exhibited KCN-insensitive activity. In addition, the electrophoretic mobility of this enzyme was observed to be faster than that of Japanese flounder Cu,Zn-SOD. On the other hand, the N-terminal amino acid sequence of this Mn-SOD was determined to be 16 amino acid residues, and the sequence showed high homology to other Mn-SODs but not Japanese flounder Cu,Zn-SOD. Analysis of nucleotide and deduced amino acid sequences revealed that the Mn-SOD cDNA consisted of a 64bp 5\u27-non-coding region, a 675bp open reading frame encoding 225 amino acids, and a 465bp 3\u27-non-coding region. The first 27 amino acids containing a mitochondria-targeting signal were highly conserved among other Mn-SODs

    STABILIZATION OF POOR SOIL BY PAPER MILL SLUDGE MIXING

    No full text

    Observation of Strong Earthquake Motions in Matsushiro Area.Part 1. : Empirical Formulae of Strong Earthquake Motions

    No full text
    地震研究所強震計観測センターでは, 1965年11月から地盤の性質のちがう保科と若穂で強震計観測を始め,その後,松代,川中島,更北,坂城に増設し, 6ケ所での観測を続けている.現在(6月11日)までに観測した最大加速度別地震数からは,次の関係が得られた.即ちN(a)=150,000a-2・5こゝに, aはgal単位の最大加速度, N(a)はaとa+50 galsの間の地震回数である
    corecore