48 research outputs found

    An examination of the success factors of African America [sic] men in executive leadership positions in Arkansas higher education

    Get PDF
    Title from PDF of title page (University of Missouri--Columbia, viewed on August 29, 2012).The entire thesis text is included in the research.pdf file; the official abstract appears in the short.pdf file; a non-technical public abstract appears in the public.pdf file.Dissertation advisor: Dr. Sandy HutchinsonIncludes bibliographical references.Vita.Ph. D. University of Missouri-Columbia 2012"May 2012"The purpose of this mixed-methods study was to examine the success factors of five African American men serving in executive leadership positions in the state of Arkansas. Five men agreed to participate in the study which included a demographic survey and semi-structured interview. The interview questions were designed to gauge the participants' views on leadership, mentorship, spirituality, career, and personal development. The interview questions were semi-structured and open ended to allow the participants to share additional insights. Web content, magazine articles, and program flyers were also examined. The research questions focused on the leaders' definition of leadership, their understanding of spirituality, the impact of mentorship, and the impact of their own personal upbringing and development. The findings included a common denominator among the leaders: strong supportive families that provided the necessary motivation for these leaders early on in life and set these men on a path to success. The leaders described how mentors and family members instilled in them a sense of responsibility toward aiding and assisting others. Finally, the leaders acknowledged how their spiritual/religious beliefs were a major factor in the motivation for the work they do as higher education executive level leaders.Includes bibliographical reference

    Report from the conference, ‘identifying obstacles to applying big data in agriculture’

    Get PDF
    Data-centric technology has not undergone widespread adoption in production agriculture but could address global needs for food security and farm profitability. Participants in the U.S. Department of Agriculture (USDA) National Institute for Food and Agriculture (NIFA) funded conference, “Identifying Obstacles to Applying Big Data in Agriculture,” held in Houston, TX, in August 2018, defined detailed scenarios in which on-farm decisions could benefit from the application of Big Data. The participants came from multiple academic fields, agricultural industries and government organizations and, in addition to defining the scenarios, they identified obstacles to implementing Big Data in these scenarios as well as potential solutions. This communication is a report on the conference and its outcomes. Two scenarios are included to represent the overall key findings in commonly identified obstacles and solutions: “In-season yield prediction for real-time decision-making”, and “Sow lameness.” Common obstacles identified at the conference included error in the data, inaccessibility of the data, unusability of the data, incompatibility of data generation and processing systems, the inconvenience of handling the data, the lack of a clear return on investment (ROI) and unclear ownership. Less common but valuable solutions to common obstacles are also noted

    Community pharmacies mood intervention Study (CHEMIST) Feasibility and External Pilot randomised controlled trial protocol

    Get PDF
    Feasibility study: Objectives:Refine a bespoke enhanced support intervention (ESI) (including self-help materials, intervention manual and training) for implementation by community pharmacy (CP) staff to people with sub-threshold depression and long-term conditions (LTCs) based upon evidence-supported interventions in primary careDevelop and refine study procedures (recruitment strategies and set up, screening, participant recruitment, assessment, suitability of outcome measures and data collection procedures) for testing in the pilot study phaseDesign: A case series/qualitative studySetting: UK community pharmacyPopulation: Adults with long-term health conditions who screen-positive for depression but who do not reach the threshold for DSM IV Moderate Depressive disorderIntervention: Enhanced support intervention (ESI) delivered by an appropriately trained community pharmacy team member involving four to six sessions over four months. ESI is a modified form of an intervention within the collaborative care framework for sub-threshold depression validated in previous studies in UK primary care which appears suitable for implementation in community settings.Sample size: 20-30 participantsOutcomes: Study implementation (recruitment and attrition rates), quality of data collection at baseline and 4 months and ESI adherence (number of contacts, DNA and drop out) as per objectives 1a/bQualitative evaluation: Semi-structured interviews with up to 10 participants and ESI facilitators and focus group(s) (range of pharmacy staff n = 8-10) will be conducted to explore the acceptability of the intervention and feasibility of the study, training and study procedures. External pilot study: Objectives:Quantify the flow of participants (eligibility, recruitment and follow-up rate)Evaluate proposed recruitment, assessment and outcome measure collection methodsExamine the delivery of the enhanced support intervention in a community pharmacy setting (intervention uptake, retention and dose) to inform process evaluationProcess evaluation, using semi-structured interviews with participants across a range of socio-economic settings, and pharmacy staff to explore the acceptability of the ESI within community pharmacy, elements of the intervention that were considered useful (or not) and appropriateness of study proceduresDesign: Pilot randomised controlled trial, including a prospective economic and qualitative evaluationSetting: As abovePopulation: As aboveIntervention: As above with adaptations post feasibility studyComparator: Usual careSample size: 100 participantsOutcomes: Data will be used to estimate recruitment, intervention delivery and study completion rates as per objectives 2a-d. Definitive estimates of the effectiveness of ESI will not be made.Primary outcome: Depression severity (Patient Health Questionnaire 9) at four months.Secondary outcomes: Patient acceptance, uptake and attrition. ICD10 depression status, anxiety (GAD 7), health-related quality of life (SF-12v2) and health-state utility (EQ5D 3L) will be measured at four months.Economic evaluation: The incremental cost per QALY will be calculated from both the NHS and societal perspective.Process evaluation: Using mixed methods, potential mediators/moderators of the intervention, the acceptability (to participants and pharmacy staff), barriers and facilitators to the use of ESI in community pharmacy, and impact on usual practice will be examined. Semi-structured interviews with approximately 30 study participants, 20 pharmacy staff and eight GPs near participating pharmacies will be conducted. Trial registration: ISRCTN: ISRCTN11290592Protocol version number: Version 4.1 (dated 16th January 2018)Study Sponsor Tees Esk and Wear Valleys NHS Foundation Trust

    Building consensus around the assessment and interpretation of Symbiodiniaceae diversity

    Get PDF
    Within microeukaryotes, genetic variation and functional variation sometimes accumulate more quickly than morphological differences. To understand the evolutionary history and ecology of such lineages, it is key to examine diversity at multiple levels of organization. In the dinoflagellate family Symbiodiniaceae, which can form endosymbioses with cnidarians (e.g., corals, octocorals, sea anemones, jellyfish), other marine invertebrates (e.g., sponges, molluscs, flatworms), and protists (e.g., foraminifera), molecular data have been used extensively over the past three decades to describe phenotypes and to make evolutionary and ecological inferences. Despite advances in Symbiodiniaceae genomics, a lack of consensus among researchers with respect to interpreting genetic data has slowed progress in the field and acted as a barrier to reconciling observations. Here, we identify key challenges regarding the assessment and interpretation of Symbiodiniaceae genetic diversity across three levels: species, populations, and communities. We summarize areas of agreement and highlight techniques and approaches that are broadly accepted. In areas where debate remains, we identify unresolved issues and discuss technologies and approaches that can help to fill knowledge gaps related to genetic and phenotypic diversity. We also discuss ways to stimulate progress, in particular by fostering a more inclusive and collaborative research community. We hope that this perspective will inspire and accelerate coral reef science by serving as a resource to those designing experiments, publishing research, and applying for funding related to Symbiodiniaceae and their symbiotic partnerships.journal articl

    The impact of viral mutations on recognition by SARS-CoV-2 specific T cells.

    Get PDF
    We identify amino acid variants within dominant SARS-CoV-2 T cell epitopes by interrogating global sequence data. Several variants within nucleocapsid and ORF3a epitopes have arisen independently in multiple lineages and result in loss of recognition by epitope-specific T cells assessed by IFN-γ and cytotoxic killing assays. Complete loss of T cell responsiveness was seen due to Q213K in the A∗01:01-restricted CD8+ ORF3a epitope FTSDYYQLY207-215; due to P13L, P13S, and P13T in the B∗27:05-restricted CD8+ nucleocapsid epitope QRNAPRITF9-17; and due to T362I and P365S in the A∗03:01/A∗11:01-restricted CD8+ nucleocapsid epitope KTFPPTEPK361-369. CD8+ T cell lines unable to recognize variant epitopes have diverse T cell receptor repertoires. These data demonstrate the potential for T cell evasion and highlight the need for ongoing surveillance for variants capable of escaping T cell as well as humoral immunity.This work is supported by the UK Medical Research Council (MRC); Chinese Academy of Medical Sciences(CAMS) Innovation Fund for Medical Sciences (CIFMS), China; National Institute for Health Research (NIHR)Oxford Biomedical Research Centre, and UK Researchand Innovation (UKRI)/NIHR through the UK Coro-navirus Immunology Consortium (UK-CIC). Sequencing of SARS-CoV-2 samples and collation of data wasundertaken by the COG-UK CONSORTIUM. COG-UK is supported by funding from the Medical ResearchCouncil (MRC) part of UK Research & Innovation (UKRI),the National Institute of Health Research (NIHR),and Genome Research Limited, operating as the Wellcome Sanger Institute. T.I.d.S. is supported by a Well-come Trust Intermediate Clinical Fellowship (110058/Z/15/Z). L.T. is supported by the Wellcome Trust(grant number 205228/Z/16/Z) and by theUniversity of Liverpool Centre for Excellence in Infectious DiseaseResearch (CEIDR). S.D. is funded by an NIHR GlobalResearch Professorship (NIHR300791). L.T. and S.C.M.are also supported by the U.S. Food and Drug Administration Medical Countermeasures Initiative contract75F40120C00085 and the National Institute for Health Research Health Protection Research Unit (HPRU) inEmerging and Zoonotic Infections (NIHR200907) at University of Liverpool inpartnership with Public HealthEngland (PHE), in collaboration with Liverpool School of Tropical Medicine and the University of Oxford.L.T. is based at the University of Liverpool. M.D.P. is funded by the NIHR Sheffield Biomedical ResearchCentre (BRC – IS-BRC-1215-20017). ISARIC4C is supported by the MRC (grant no MC_PC_19059). J.C.K.is a Wellcome Investigator (WT204969/Z/16/Z) and supported by NIHR Oxford Biomedical Research Centreand CIFMS. The views expressed are those of the authors and not necessarily those of the NIHR or MRC

    Evaluating the Effects of SARS-CoV-2 Spike Mutation D614G on Transmissibility and Pathogenicity.

    Get PDF
    Global dispersal and increasing frequency of the SARS-CoV-2 spike protein variant D614G are suggestive of a selective advantage but may also be due to a random founder effect. We investigate the hypothesis for positive selection of spike D614G in the United Kingdom using more than 25,000 whole genome SARS-CoV-2 sequences. Despite the availability of a large dataset, well represented by both spike 614 variants, not all approaches showed a conclusive signal of positive selection. Population genetic analysis indicates that 614G increases in frequency relative to 614D in a manner consistent with a selective advantage. We do not find any indication that patients infected with the spike 614G variant have higher COVID-19 mortality or clinical severity, but 614G is associated with higher viral load and younger age of patients. Significant differences in growth and size of 614G phylogenetic clusters indicate a need for continued study of this variant

    Building consensus around the assessment and interpretation of Symbiodiniaceae diversity

    Get PDF
    Within microeukaryotes, genetic variation and functional variation sometimes accumulate more quickly than morphological differences. To understand the evolutionary history and ecology of such lineages, it is key to examine diversity at multiple levels of organization. In the dinoflagellate family Symbiodiniaceae, which can form endosymbioses with cnidarians (e.g., corals, octocorals, sea anemones, jellyfish), other marine invertebrates (e.g., sponges, molluscs, flatworms), and protists (e.g., foraminifera), molecular data have been used extensively over the past three decades to describe phenotypes and to make evolutionary and ecological inferences. Despite advances in Symbiodiniaceae genomics, a lack of consensus among researchers with respect to interpreting genetic data has slowed progress in the field and acted as a barrier to reconciling observations. Here, we identify key challenges regarding the assessment and interpretation of Symbiodiniaceae genetic diversity across three levels: species, populations, and communities. We summarize areas of agreement and highlight techniques and approaches that are broadly accepted. In areas where debate remains, we identify unresolved issues and discuss technologies and approaches that can help to fill knowledge gaps related to genetic and phenotypic diversity. We also discuss ways to stimulate progress, in particular by fostering a more inclusive and collaborative research community. We hope that this perspective will inspire and accelerate coral reef science by serving as a resource to those designing experiments, publishing research, and applying for funding related to Symbiodiniaceae and their symbiotic partnerships

    Recurrent SARS-CoV-2 mutations in immunodeficient patients

    Get PDF
    Long-term severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections in immunodeficient patients are an important source of variation for the virus but are understudied. Many case studies have been published which describe one or a small number of long-term infected individuals but no study has combined these sequences into a cohesive dataset. This work aims to rectify this and study the genomics of this patient group through a combination of literature searches as well as identifying new case series directly from the COVID-19 Genomics UK (COG-UK) dataset. The spike gene receptor-binding domain and N-terminal domain (NTD) were identified as mutation hotspots. Numerous mutations associated with variants of concern were observed to emerge recurrently. Additionally a mutation in the envelope gene, T30I was determined to be the second most frequent recurrently occurring mutation arising in persistent infections. A high proportion of recurrent mutations in immunodeficient individuals are associated with ACE2 affinity, immune escape, or viral packaging optimisation.There is an apparent selective pressure for mutations that aid cell–cell transmission within the host or persistence which are often different from mutations that aid inter-host transmission, although the fact that multiple recurrent de novo mutations are considered defining for variants of concern strongly indicates that this potential source of novel variants should not be discounted. © The Author(s) 2022. Published by Oxford University Press

    An integrated national scale SARS-CoV-2 genomic surveillance network

    Get PDF

    Spatial growth rate of emerging SARS-CoV-2 lineages in England, September 2020-December 2021

    Get PDF
    This paper uses a robust method of spatial epidemiological analysis to assess the spatial growth rate of multiple lineages of SARS-CoV-2 in the local authority areas of England, September 2020–December 2021. Using the genomic surveillance records of the COVID-19 Genomics UK (COG-UK) Consortium, the analysis identifies a substantial (7.6-fold) difference in the average rate of spatial growth of 37 sample lineages, from the slowest (Delta AY.4.3) to the fastest (Omicron BA.1). Spatial growth of the Omicron (B.1.1.529 and BA) variant was found to be 2.81× faster than the Delta (B.1.617.2 and AY) variant and 3.76× faster than the Alpha (B.1.1.7 and Q) variant. In addition to AY.4.2 (a designated variant under investigation, VUI-21OCT-01), three Delta sublineages (AY.43, AY.98 and AY.120) were found to display a statistically faster rate of spatial growth than the parent lineage and would seem to merit further investigation. We suggest that the monitoring of spatial growth rates is a potentially valuable adjunct to outbreak response procedures for emerging SARS-CoV-2 variants in a defined population
    corecore