3,143 research outputs found

    The Early Evolution of Primordial Pair-Instability Supernovae

    Full text link
    The observational signatures of the first cosmic explosions and their chemical imprint on second-generation stars both crucially depend on how heavy elements mix within the star at the earliest stages of the blast. We present numerical simulations of the early evolution of Population III pair-instability supernovae with the new adaptive mesh refinement code CASTRO. In stark contrast to 15 - 40 Msun core-collapse primordial supernovae, we find no mixing in most 150 - 250 Msun pair-instability supernovae out to times well after breakout from the surface of the star. This may be the key to determining the mass of the progenitor of a primeval supernova, because vigorous mixing will cause emission lines from heavy metals such as Fe and Ni to appear much sooner in the light curves of core-collapse supernovae than in those of pair-instability explosions. Our results also imply that unlike low-mass Pop III supernovae, whose collective metal yields can be directly compared to the chemical abundances of extremely metal-poor stars, further detailed numerical simulations will be required to determine the nucleosynthetic imprint of very massive Pop III stars on their direct descendants.Comment: submitted to ApJ, comments welcom

    Measuring the Cosmic Equation of State with Counts of Galaxies

    Full text link
    The classical dN/dz test allows the determination of fundamental cosmological parameters from the evolution of the cosmic volume element. This test is applied by measuring the redshift distribution of a tracer whose evolution in number density is known. In the past, ordinary galaxies have been used as such a tracer; however, in the absence of a complete theory of galaxy formation, that method is fraught with difficulties. In this paper, we propose studying instead the evolution of the apparent abundance of dark matter halos as a function of their circular velocity, observable via the linewidths or rotation speeds of visible galaxies. Upcoming redshift surveys will allow the linewidth distribution of galaxies to be determined at both z~1 and the present day. In the course of studying this test, we have devised a rapid, improved semi-analytic method for calculating the circular velocity distribution of dark halos based upon the analytic mass function of Sheth et al. (1999) and the formation time distribution of Lacey & Cole (1993). We find that if selection effects are well-controlled and minimal external constraints are applied, the planned DEEP Redshift Survey should allow the measurement of the cosmic equation-of-state parameter w to 10% (as little as 3% if Omega_m has been well-determined from other observations). This type of test has the potential also to provide a constraint on any evolution of w such as that predicted by ``tracker'' models.Comment: 4 pages plus 3 embedded figures; version approved by Ap. J. Letters. A greatly improved error analysis has been added, along with a figure showing complementarity to other cosmological test

    The Evolution of Diffuse Radio Sources in Galaxy Clusters

    Full text link
    We investigate the evolution and number distribution of radio halos in galaxy clusters. Without re-acceleration or regeneration, the relativistic electrons responsible for the diffuse radio emission will lose their energy via inverse-Compton and synchrotron losses in a rather short time, and radio halos will have lifetimes ∌\sim 0.1 Gyr. Radio halos could last for ∌\sim Gyr if a significant level of re-acceleration is involved. The lifetimes of radio halos would be comparable with the cosmological time if the radio-emitting electrons are mainly the secondary electrons generated by pion decay following proton-proton collisions between cosmic-ray protons and the thermal intra-cluster medium within the galaxy clusters. Adopting both observational and theoretical constraints for the formation of radio halos, we calculate the formation rates and the comoving number density of radio halos in the hierarchical clustering scheme. Comparing with observations, we find that the lifetimes of radio halos are ∌\sim Gyr. Our results indicate that a significant level of re-acceleration is necessary for the observed radio halos and the secondary electrons may not be a dominant origin for radio halos.Comment: 22 pages, 6 figures, ApJ, in press (v2:Corrected typos.

    Nonlinear stochastic biasing from the formation epoch distribution of dark halos

    Get PDF
    We propose a physical model for nonlinear stochastic biasing of one-point statistics resulting from the formation epoch distribution of dark halos. In contrast to previous works on the basis of extensive numerical simulations, our model provides for the first time an analytic expression for the joint probability function. Specifically we derive the joint probability function of halo and mass density contrasts from the extended Press-Schechter theory. Since this function is derived in the framework of the standard gravitational instability theory assuming the random-Gaussianity of the primordial density field alone, we expect that the basic features of the nonlinear and stochastic biasing predicted from our model are fairly generic. As representative examples, we compute the various biasing parameters in cold dark matter models as a function of a redshift and a smoothing length. Our major findings are (1) the biasing of the variance evolves strongly as redshift while its scale-dependence is generally weak and a simple linear biasing model provides a reasonable approximation roughly at R\simgt 2(1+z)\himpc, and (2) the stochasticity exhibits moderate scale-dependence especially on R\simlt 20\himpc, but is almost independent of zz. Comparison with the previous numerical simulations shows good agreement with the above behavior, indicating that the nonlinear and stochastic nature of the halo biasing is essentially understood by taking account of the distribution of the halo mass and the formation epoch.Comment: 34 pages, 11 figures, ApJ (2000) in pres

    Perfectionism and self-conscious emotions in British and Japanese students: Predicting pride and embarrassment after success and failure

    Get PDF
    Regarding self-conscious emotions, studies have shown that different forms of perfectionism show different relationships with pride, shame, and embarrassment depending on success and failure. What is unknown is whether these relationships also show cultural variations. Therefore, we conducted a study investigating how self-oriented and socially prescribed perfectionism predicted pride and embarrassment after success and failure comparing 363 British and 352 Japanese students. Students were asked to respond to a set of scenarios where they imagined achieving either perfect (success) or flawed results (failure). In both British and Japanese students, self-oriented perfectionism positively predicted pride after success and embarrassment after failure whereas socially prescribed perfectionism predicted embarrassment after success and failure. Moreover, in Japanese students, socially prescribed perfectionism positively predicted pride after success and self-oriented perfectionism negatively predicted pride after failure. The findings have implications for our understanding of perfectionism indicating that the perfectionism–pride relationship not only varies between perfectionism dimensions, but may also show cultural variations

    Chandra View of the Dynamically Young Cluster of Galaxies A1367 I. Small-Scale Structures

    Full text link
    The 40 ks \emph{Chandra} ACIS-S observation of A1367 provides new insights into small-scale structures and point sources in this dynamically young cluster. Here we concentrate on small-scale extended structures. A ridge-like structure around the center (``the ridge'') is significant in the \chandra\ image. The ridge, with a projected length of ∌\sim 8 arcmin (or 300 h0.5−1_{0.5}^{-1} kpc), is elongated from northwest (NW) to southeast (SE), as is the X-ray surface brightness distribution on much larger scales (∌\sim 2 h0.5−1_{0.5}^{-1} Mpc). The ridge is cooler than its western and southern surroundings while the differences from its eastern and northern surroundings are small. We also searched for small-scale structures with sizes ∌\sim arcmin. Nine extended features, with sizes from ∌\sim 0.5â€Č' to 1.5â€Č', were detected at significance levels above 4 σ\sigma. Five of the nine features are located in the ridge and form local crests. The nine extended features can be divided into two types. Those associated with galaxies (NGC 3860B, NGC 3860 and UGC 6697) are significantly cooler than their surroundings (0.3 - 0.9 keV vs. 3 - 4.5 keV). The masses of their host galaxies are sufficient to bind the extended gas. These extended features are probably related to thermal halos or galactic superwinds of their host galaxies. The existence of these relatively cold halos imply that galaxy coronae can survive in cluster environment (e.g., Vikhlinin et al. 2001). Features of the second type are not apparently associated with galaxies. Their temperatures may not be significantly different from those of their surroundings. This class of extended features may be related to the ridge. We consider several possibilities for the ridge and the second type of extended features. The merging scenario is preferred.Comment: To appear in ApJ, Vol 576, 2002, Sep., a high-resolution version is in http://cfa160.harvard.edu/~sunm/a1367_a.ps.g

    Synthesis, Structure, and Ferromagnetism of a New Oxygen Defect Pyrochlore System Lu2V2O_{7-x} (x = 0.40-0.65)

    Full text link
    A new fcc oxygen defect pyrochlore structure system Lu2V2O_{7-x} with x = 0.40 to 0.65 was synthesized from the known fcc ferromagnetic semiconductor pyrochlore compound Lu2V2O7 which can be written as Lu2V2O6O' with two inequivalent oxygen sites O and O'. Rietveld x-ray diffraction refinements showed significant Lu-V antisite disorder for x >= 0.5. The lattice parameter versus x (including x = 0) shows a distinct maximum at x ~ 0.4. We propose that these observations can be explained if the oxygen defects are on the O' sublattice of the structure. The magnetic susceptibility versus temperature exhibits Curie-Weiss behavior above 150 K for all x, with a Curie constant C that increases with x as expected in an ionic model. However, the magnetization measurements also show that the (ferromagnetic) Weiss temperature theta and the ferromagnetic ordering temperature T_C both strongly decrease with increasing x instead of increasing as expected from C(x). The T_C decreases from 73 K for x = 0 to 21 K for x = 0.65. Furthermore, the saturation moment at a field of 5.5 T at 5 K is nearly independent of x, with the value expected for a fixed spin 1/2 per V. The latter three observations suggest that Lu2V2O_{7-x} may contain localized spin 1/2 vanadium moments in a metallic background that is induced by oxygen defect doping, instead of being a semiconductor as suggested by the C(x) dependence.Comment: 9 pages including 7 figures, 3 table

    Observing H2 Emission in Forming Galaxies

    Full text link
    We study the H2 cooling emission of forming galaxies, and discuss their observability using the future infrared facility SAFIR. Forming galaxies with mass >10^11 Msun emit most of their gravitational energy liberated by contraction in molecular hydrogen line radiation, although a large part of thermal energy at virialization is radiated away by the H Ly alpha emission. For more massive objects, the degree of heating due to dissipation of kinetic energy is so great that the temperature does not drop below 10^4 K and the gravitational energy is emitted mainly by the Ly alpha emission. Therefore, the total H2 luminosity attains the peak value of about 10^42 ergs/s for forming galaxies whose total mass 10^11 Msun. If these sources are situated at redshift z=8, they can be detected by rotational lines of 0-0S(3) at 9.7 micron and 0-0S(1) at 17 micron by SAFIR. An efficient way to find such H2 emitters is to look at the Ly alpha emitters, since the brightest H2 emitters are also luminous in the Ly alpha emission.Comment: 20 pages, 7 figures, ApJ accepte

    Formation of Sub-galactic Clouds under UV Background Radiation

    Get PDF
    The effects of the UV background radiation on the formation of sub-galactic clouds are studied by means of one-dimensional hydrodynamical simulations. The radiative transfer of the ionizing photons due to the absorption by HI, HeI and HeII, neglecting the emission, is explicitly taken into account. We find that the complete suppression of collapse occurs for the clouds with circular velocities typically in the range V_c \sim 15-40 km/s and the 50% reduction in the cooled gas mass with V_c \sim 20-55 km/s. These values depend most sensitively on the collapse epoch of the cloud, the shape of the UV spectrum, and the evolution of the UV intensity. Compared to the optically thin case, previously investigated by Thoul & Weinberg (1996), the absorption of the external UV photon by the intervening medium systematically lowers the above threshold values by \Delta V_c \sim 5 km/s. Whether the gas can contract or keeps expanding is roughly determined by the balance between the gravitational force and the thermal pressure gradient when it is maximally exposed to the external UV flux. Based on our simulation results, we discuss a number of implications on galaxy formation, cosmic star formation history, and the observations of quasar absorption lines. In Appendix, we derive analytical formulae for the photoionization coefficients and heating rates, which incorporate the frequency/direction-dependent transfer of external photons.Comment: 38 pages, 16 figures, accepted for publication in Ap

    Constraints on Primordial Nongaussiantiy from the High-Redshift Cluster MS1054--03

    Get PDF
    The implications of the massive, X-ray selected cluster of galaxies MS1054--03 at z=0.83z=0.83 are discussed in light of the hypothesis that the primordial density fluctuations may be nongaussian. We generalize the Press-Schechter (PS) formalism to the nongaussian case, and calculate the likelihood that a cluster as massive as MS1054 would appear in the EMSS. The probability of finding an MS1054-like cluster depends only on \omegam and the extent of primordial nongaussianity. We quantify the latter by adopting a specific functional form for the PDF, denoted ψλ,\psi_\lambda, which tends to Gaussianity for λ≫1,\lambda\gg 1, and show how λ\lambda is related to the more familiar statistic T,T, the probability of ≄3σ\ge 3\sigma fluctuations for a given PDF relative to a Gaussian. We find that Gaussian initial density fluctuations are consistent with the data on MS1054 only if \omegam\simlt 0.2. For \omegam\ge 0.25 a significant degree of nongaussianity is required, unless the mass of MS1054 has been substantially overestimated by X-ray and weak lensing data. The required amount of nongaussianity is a rapidly increasing function of \omegam for 0.25 \le \omegam \le 0.45, with λ≀1\lambda \le 1 (T \simgt 7) at the upper end of this range. For a fiducial \omegam=0.3, \omegal=0.7 universe, favored by several lines of evidence we obtain an upper limit λ≀10,\lambda \le 10, corresponding to a T≄3.T\ge 3. This finding is consistent with the conclusions of Koyama, Soda, & Taruya (1999), who applied the generalized PS formalism to low (z\simlt 0.1) and intermediate (z\simlt 0.6) redshift cluster data sets.Comment: 15 pages, 11 figures, submitted to the Astrophysical Journal, uses emulateapj.st
    • 

    corecore