The observational signatures of the first cosmic explosions and their
chemical imprint on second-generation stars both crucially depend on how heavy
elements mix within the star at the earliest stages of the blast. We present
numerical simulations of the early evolution of Population III pair-instability
supernovae with the new adaptive mesh refinement code CASTRO. In stark contrast
to 15 - 40 Msun core-collapse primordial supernovae, we find no mixing in most
150 - 250 Msun pair-instability supernovae out to times well after breakout
from the surface of the star. This may be the key to determining the mass of
the progenitor of a primeval supernova, because vigorous mixing will cause
emission lines from heavy metals such as Fe and Ni to appear much sooner in the
light curves of core-collapse supernovae than in those of pair-instability
explosions. Our results also imply that unlike low-mass Pop III supernovae,
whose collective metal yields can be directly compared to the chemical
abundances of extremely metal-poor stars, further detailed numerical
simulations will be required to determine the nucleosynthetic imprint of very
massive Pop III stars on their direct descendants.Comment: submitted to ApJ, comments welcom