The implications of the massive, X-ray selected cluster of galaxies
MS1054--03 at z=0.83 are discussed in light of the hypothesis that the
primordial density fluctuations may be nongaussian. We generalize the
Press-Schechter (PS) formalism to the nongaussian case, and calculate the
likelihood that a cluster as massive as MS1054 would appear in the EMSS. The
probability of finding an MS1054-like cluster depends only on \omegam and the
extent of primordial nongaussianity. We quantify the latter by adopting a
specific functional form for the PDF, denoted ψλ, which tends to
Gaussianity for λ≫1, and show how λ is related to the more
familiar statistic T, the probability of ≥3σ fluctuations for a
given PDF relative to a Gaussian. We find that Gaussian initial density
fluctuations are consistent with the data on MS1054 only if \omegam\simlt
0.2. For \omegam\ge 0.25 a significant degree of nongaussianity is required,
unless the mass of MS1054 has been substantially overestimated by X-ray and
weak lensing data. The required amount of nongaussianity is a rapidly
increasing function of \omegam for 0.25 \le \omegam \le 0.45, with λ≤1 (T \simgt 7) at the upper end of this range. For a fiducial
\omegam=0.3,\omegal=0.7 universe, favored by several lines of evidence we
obtain an upper limit λ≤10, corresponding to a T≥3. This
finding is consistent with the conclusions of Koyama, Soda, & Taruya (1999),
who applied the generalized PS formalism to low (z\simlt 0.1) and
intermediate (z\simlt 0.6) redshift cluster data sets.Comment: 15 pages, 11 figures, submitted to the Astrophysical Journal, uses
emulateapj.st