409 research outputs found

    Carbon dioxide as working gas for laboratory plasmas

    Get PDF
    Measurements with a RF probe, retarding potential analyzer and mass spectrometer in a laboratory plasma tank were performed using the gases CO2, N2, A and He in order to compare their properties as working gases for laboratory plasma production. The overall result of that CO2 leads to higher plasma densities at lower neutral-gas pressures as well as to a larger Maxwellian component of the electron population, while the electron temperature is lower than that when N2, A and He are used

    Optomotor Swimming in Larval Zebrafish Is Driven by Global Whole-Field Visual Motion and Local Light-Dark Transitions

    No full text
    Stabilizing gaze and position within an environment constitutes an important task for the nervous system of many animals. The optomotor response (OMR) is a reflexive behavior, present across many species, in which animals move in the direction of perceived whole-field visual motion, therefore stabilizing themselves with respect to the visual environment. Although the OMR has been extensively used to probe visuomotor neuronal circuitry, the exact visual cues that elicit the behavior remain unidentified. In this study, we use larval zebrafish to identify spatio-temporal visual features that robustly elicit forward OMR swimming. These cues consist of a local, forward-moving, off edge together with on/off symmetric, similarly directed, global motion. Imaging experiments reveal neural units specifically activated by the forward-moving light-dark transition. We conclude that the OMR is driven not just by whole-field motion but by the interplay between global and local visual stimuli, where the latter exhibits a strong light-dark asymmetry

    Indecomposable modules and Gelfand rings

    Full text link
    It is proved that a commutative ring is clean if and only if it is Gelfand with a totally disconnected maximal spectrum. Commutative rings for which each indecomposable module has a local endomorphism ring are studied. These rings are clean and elementary divisor rings

    A cerebellar internal model calibrates a feedback controller involved in sensorimotor control

    Get PDF
    Animals can adjust their behavior in response to changes in the environment when these changes can be predicted. Here the authors show the role of the cerebellum in zebrafish that change their swimming as they adjust to long-lasting changes in visual feedback Animals must adapt their behavior to survive in a changing environment. Behavioral adaptations can be evoked by two mechanisms: feedback control and internal-model-based control. Feedback controllers can maintain the sensory state of the animal at a desired level under different environmental conditions. In contrast, internal models learn the relationship between the motor output and its sensory consequences and can be used to recalibrate behaviors. Here, we present multiple unpredictable perturbations in visual feedback to larval zebrafish performing the optomotor response and show that they react to these perturbations through a feedback control mechanism. In contrast, if a perturbation is long-lasting, fish adapt their behavior by updating a cerebellum-dependent internal model. We use modelling and functional imaging to show that the neuronal requirements for these mechanisms are met in the larval zebrafish brain. Our results illustrate the role of the cerebellum in encoding internal models and how these can calibrate neuronal circuits involved in reactive behaviors depending on the interactions between animal and environment

    Online laboratories in engineering education research and practice

    Get PDF
    Instructional laboratories have long been an integral part of engineering education and technical degree programs. Today, online laboratories using remote, simulation, or even immersive virtual reality technologies offer additional innovation potential for teaching with a wide variety of pedagogical approaches, of which some are possible only because of the introduced technology and its new affordances. Educational research in this field is focused on developing new educational settings for the use of online laboratories and on fundamentally understanding how these new types of instructional laboratories influence both the faculty and the student experience. Gaining this fundamental understanding of the sociotechnical instructional reality introduced by online laboratories is highly relevant, as students should be given the opportunity to use all laboratory formats, depending on the targeted learning goal, the available equipment, or individual personal preferences of students or even faculty. This chapter takes a closer look at engineering education research and the specific field of instructional online laboratories in higher education, with a focus on remote and virtual laboratories. In this context, the chapter covers the overall background, advantages and challenges, educational research, pedagogy, history and examples, and the innovation potential of online laboratories for current as well as future engineering education.info:eu-repo/semantics/publishedVersio

    Report on Alternative Devices to Pyrotechnics on Spacecraft

    Get PDF
    Pyrotechnics accomplish many functions on today's spacecraft, possessing minimum volume/weight, providing instantaneous operation on demand, and requiring little input energy. However, functional shock, safety, and overall system cost issues, combined with emergence and availability of new technologies question their continued use on space missions. Upon request from the National Aeronautics and Space Administration's (NASA) Program Management Council (PMC), Langley Research Center (LaRC) conducted a survey to identify and evaluate state-of-the-art non-explosively actuated (NEA) alternatives to pyrotechnics, identify NEA devices planned for NASA use, and investigate potential interagency cooperative efforts. In this study, over 135 organizations were contacted, including NASA field centers, Department of Defense (DOD) and other government laboratories, universities, and American and European industrial sources resulting in further detailed discussions with over half, and 18 face-to-face briefings. Unlike their single use pyrotechnic predecessors, NEA mechanisms are typically reusable or refurbishable, allowing flight of actual tested units. NEAs surveyed include spool-based devices, thermal knife, Fast Acting Shockless Separation Nut (FASSN), paraffin actuators, and shape memory alloy (SMA) devices (e.g., Frangibolt). The electro-mechanical spool, paraffin actuator and thermal knife are mature, flight proven technologies, while SMA devices have a limited flight history. There is a relationship between shock, input energy requirements, and mechanism functioning rate. Some devices (e.g., Frangibolt and spool based mechanisms) produce significant levels of functional shock. Paraffin, thermal knife, and SMA devices can provide gentle, shock-free release but cannot perform critically timed, simultaneous functions. The FASSN flywheel-nut release device possesses significant potential for reducing functional shock while activating nearly instantaneously. Specific study recommendations include: (1) development of NEA standards, specifically in areas of material characterization, functioning rates, and test methods; (2) a systems level approach to assure successful NEA technology application; and (3) further investigations into user needs, along with industry/government system-level real spacecraft cost benefit trade studies to determine NEA application foci and performance requirements. Additional survey observations reveal an industry and government desire to establish partnerships to investigate remaining unknowns and formulate NEA standards, specifically those driven by SMAs. Finally, there is increased interest and need to investigate alternative devices for such functions as stage/shroud separation and high pressure valving. This paper summarizes results of the NASA-LaRC survey of pyrotechnic alternatives. State of-the-art devices with their associated weight and cost savings are presented. Additionally, a comparison of functional shock characteristics of several devices are shown, and potentially related technology developments are highlighted

    Physical interpretation of stochastic Schroedinger equations in cavity QED

    Full text link
    We propose physical interpretations for stochastic methods which have been developed recently to describe the evolution of a quantum system interacting with a reservoir. As opposed to the usual reduced density operator approach, which refers to ensemble averages, these methods deal with the dynamics of single realizations, and involve the solution of stochastic Schr\"odinger equations. These procedures have been shown to be completely equivalent to the master equation approach when ensemble averages are taken over many realizations. We show that these techniques are not only convenient mathematical tools for dissipative systems, but may actually correspond to concrete physical processes, for any temperature of the reservoir. We consider a mode of the electromagnetic field in a cavity interacting with a beam of two- or three-level atoms, the field mode playing the role of a small system and the atomic beam standing for a reservoir at finite temperature, the interaction between them being given by the Jaynes-Cummings model. We show that the evolution of the field states, under continuous monitoring of the state of the atoms which leave the cavity, can be described in terms of either the Monte Carlo Wave-Function (quantum jump) method or a stochastic Schr\"odinger equation, depending on the system configuration. We also show that the Monte Carlo Wave-Function approach leads, for finite temperatures, to localization into jumping Fock states, while the diffusion equation method leads to localization into states with a diffusing average photon number, which for sufficiently small temperatures are close approximations to mildly squeezed states.Comment: 12 pages RevTeX 3.0 + 6 figures (GIF format; for higher-resolution postscript images or hardcopies contact the authors.) Submitted to Phys. Rev.

    Remote access laboratories for preparing STEM teachers: preliminary exploration

    Get PDF
    Education for Science, Technology, Engineering, and Mathematics (STEM) is acknowledged as a priority throughout the world but many K-6 teachers are inadequately prepared for it by virtue of limited exposure in their own schooling and teacher preparation. Remote Access Laboratories (RAL) offer opportunities to enhance the variety of STEM experiences available to learners and teachers in schools, especially those in remote locations. They also have potential for preparing teachers to work with STEM in their classrooms by developing relevant knowledge and self-efficacy for teaching technologies education. This paper reports some results from preliminary trials of an innovative RAL system with pre-service teachers

    Gender differences in cognitive functioning in older alcohol-dependent patients

    Get PDF
    FSW - Self-regulation models for health behavior and psychopathology - ou
    • …
    corecore