64 research outputs found

    A Distribution of Large Particles in the Coma of Comet 103P/Hartley 2

    Full text link
    The coma of comet 103P/Hartley 2 has a significant population of large particles observed as point sources in images taken by the Deep Impact spacecraft. We measure their spatial and flux distributions, and attempt to constrain their composition. The flux distribution of these particles implies a very steep size distribution with power-law slopes ranging from -6.6 to -4.7. The radii of the particles extend up to 20 cm, and perhaps up to 2 m, but their exact sizes depend on their unknown light scattering properties. We consider two cases: bright icy material, and dark dusty material. The icy case better describes the particles if water sublimation from the particles causes a significant rocket force, which we propose as the best method to account for the observed spatial distribution. Solar radiation is a plausible alternative, but only if the particles are very low density aggregates. If we treat the particles as mini-nuclei, we estimate they account for <16-80% of the comet's total water production rate (within 20.6 km). Dark dusty particles, however, are not favored based on mass arguments. The water production rate from bright icy particles is constrained with an upper limit of 0.1 to 0.5% of the total water production rate of the comet. If indeed icy with a high albedo, these particles do not appear to account for the comet's large water production rate. production rate. Erratum: We have corrected the radii and masses of the large particles of comet 103P/Hartley 2 and present revised conclusions in the attached erratum.Comment: Original article: 46 pages, 17 figures, 5 tables, published in Icarus. Erratum: 5 pages, 1 table, accepted for publication in Icaru

    Techniques for Galactic Dust Measurements in the Heliosphere

    Get PDF
    Galactic interstellar dust (ISD) is the major ingredient in planetary formation. However, information on this important material has been extremely limited. Recently the Ulysses dust detector has identified and measured interstellar dust outside 1.8~AU from the Sun at ecliptic latitudes above 50∘50^{\circ}. Inside this distance it could not reliably distinguish interstellar from interplanetary dust. Modeling the Ulysses data suggests that up to 30 % of dust flux with masses above 10−16kg10^{-16}\rm kg at 1~AU is of interstellar origin. From the Hiten satellite in high eccentric orbit about the Earth there are indications that ISD indeed reaches the Earth's orbit. Two new missions carrying dust detectors, Cassini and Stardust, will greatly increase our observational knowledge. In this paper we briefly review instruments used on these missions and compare their capabilities. The Stardust mission [{\em Brownlee et al.}, 1996] will analyze the local interstellar dust population by an in-situ chemical analyzer and collect ISD between 2 and 3~AU from the Sun. The dust analyzer on the Cassini mission will determine the interstellar dust flux outside Venus' orbit and will provide also some compositional information. Techniques to identify the ISD flux levels at 1~AU are described that can quantify the interstellar dust flux in high-Earth orbit (outside the debris belts) and provide chemical composition information of galactic dust.Comment: Accepted for Journal of Geophysical Research, 6 figures, Late

    Interstellar Dust Inside and Outside the Heliosphere

    Get PDF
    In the early 1990s, after its Jupiter flyby, the Ulysses spacecraft identified interstellar dust in the solar system. Since then the in-situ dust detector on board Ulysses continuously monitored interstellar grains with masses up to 10e-13 kg, penetrating deep into the solar system. While Ulysses measured the interstellar dust stream at high ecliptic latitudes between 3 and 5 AU, interstellar impactors were also measured with the in-situ dust detectors on board Cassini, Galileo and Helios, covering a heliocentric distance range between 0.3 and 3 AU in the ecliptic plane. The interstellar dust stream in the inner solar system is altered by the solar radiation pressure force, gravitational focussing and interaction of charged grains with the time varying interplanetary magnetic field. The grains act as tracers of the physical conditions in the local interstellar cloud (LIC). Our in-situ measurements imply the existence of a population of 'big' interstellar grains (up to 10e-13 kg) and a gas-to-dust-mass ratio in the LIC which is a factor of > 2 larger than the one derived from astronomical observations, indicating a concentration of interstellar dust in the very local interstellar medium. Until 2004, the interstellar dust flow direction measured by Ulysses was close to the mean apex of the Sun's motion through the LIC, while in 2005, the data showed a 30 deg shift, the reason of which is presently unknown. We review the results from spacecraft-based in-situ interstellar dust measurements in the solar system and their implications for the physical and chemical state of the LIC.Comment: 10 pages, 2 b/w figures, 1 colour figure; submitted to Space Science Review

    Shape, Density, and Geology of the Nucleus of Comet 103P/Hartley 2

    Get PDF
    Data from the Extrasolar Planet Observation and Deep Impact Extended Investigation (EPOXI) mission show Comet 103P/Hartley 2 is a bi-lobed, elongated, nearly axially symmetric comet 2.33 km in length. Surface features are primarily small mounds 1%. The shape may be the evolutionary product of insolation, sublimation, and temporary deposition of materials controlled by the objects complex rotation

    Shape, density, and geology of the nucleus of Comet 103P/Hartley 2

    Get PDF
    a b s t r a c t Data from the Extrasolar Planet Observation and Deep Impact Extended Investigation (EPOXI) mission show Comet 103P/Hartley 2 is a bi-lobed, elongated, nearly axially symmetric comet 2.33 km in length. Surface features are primarily small mounds &lt;40 m across, irregularly-shaped smooth areas on the two lobes, and a smooth but variegated region forming a &apos;&apos;waist&apos;&apos; between the two lobes. Assuming parts of the comet body approach the shape of an equipotential surface, the mean density of Hartley 2 is modeled to be 200-400 kg m À3 . Such a mean density suggests mass loss per orbit of &gt;1%. The shape may be the evolutionary product of insolation, sublimation, and temporary deposition of materials controlled by the object&apos;s complex rotation

    Carbon-rich dust in comet 67P/Churyumov-Gerasimenko measured by COSIMA/Rosetta

    Get PDF
    Cometary ices are rich in CO2, CO and organic volatile compounds, but the carbon content of cometary dust was only measured for the Oort Cloud comet 1P/Halley, during its flyby in 1986. The COmetary Secondary Ion Mass Analyzer (COSIMA)/Rosetta mass spectrometer analysed dust particles with sizes ranging from 50 to 1000 Όm, collected over 2 yr, from 67P/Churyumov-Gerasimenko (67P), a Jupiter family comet. Here, we report 67P dust composition focusing on the elements C and O. It has a high carbon content (atomic |C/Si=5.5 −1.2+1.4  on average{\rm{C}}/{\rm{Si}} = 5.5{\rm{\ }}_{ - 1.2}^{ + 1.4}\ \ {\rm{on\ average}} |⁠) close to the solar value and comparable to the 1P/Halley data. From COSIMA measurements, we conclude that 67P particles are made of nearly 50 per cent organic matter in mass, mixed with mineral phases that are mostly anhydrous. The whole composition, rich in carbon and non-hydrated minerals, points to a primitive matter that likely preserved its initial characteristics since the comet accretion in the outer regions of the protoplanetary disc.</p

    Nitrogen-to-carbon atomic ratio measured by COSIMA in the particles of comet 67P/Churyumov–Gerasimenko

    Get PDF
    The COmetary Secondary Ion Mass Analyzer (COSIMA) on board the Rosetta mission has analysed numerous cometary dust particles collected at very low velocities (a few m s−1) in the environment of comet 67P/Churyumov–Gerasimenko (hereafter 67P). In these particles, carbon and nitrogen are expected mainly to be part of the organic matter. We have measured the nitrogen-to-carbon (N/C) atomic ratio of 27 cometary particles. It ranges from 0.018 to 0.06 with an averaged value of 0.035 ± 0.011. This is compatible with the measurements of the particles of comet 1P/Halley and is in the lower range of the values measured in comet 81P/Wild 2 particles brought back to Earth by the Stardust mission. Moreover, the averaged value found in 67P particles is also similar to the one found in the insoluble organic matter extracted from CM, CI and CR carbonaceous chondrites and to the bulk values measured in most interplanetary dust particles and micrometeorites. The close agreement of the N/C atomic ratio in all these objects indicates that their organic matters share some similarities and could have a similar chemical origin. Furthermore, compared to the abundances of all the detected elements in the particles of 67P and to the elemental solar abundances, the nitrogen is depleted in the particles and the nucleus of 67P as was previously inferred also for comet 1P/Halley. This nitrogen depletion could constrain the formation scenarios of cometary nuclei.</p

    Das Experiment COSIMA auf ROSETTA: Schlussbericht

    No full text
    • 

    corecore