Galactic interstellar dust (ISD) is the major ingredient in planetary
formation. However, information on this important material has been extremely
limited. Recently the Ulysses dust detector has identified and measured
interstellar dust outside 1.8~AU from the Sun at ecliptic latitudes above
50∘. Inside this distance it could not reliably distinguish
interstellar from interplanetary dust. Modeling the Ulysses data suggests that
up to 30 % of dust flux with masses above 10−16kg at 1~AU is of
interstellar origin. From the Hiten satellite in high eccentric orbit about the
Earth there are indications that ISD indeed reaches the Earth's orbit. Two new
missions carrying dust detectors, Cassini and Stardust, will greatly increase
our observational knowledge. In this paper we briefly review instruments used
on these missions and compare their capabilities. The Stardust mission [{\em
Brownlee et al.}, 1996] will analyze the local interstellar dust population by
an in-situ chemical analyzer and collect ISD between 2 and 3~AU from the Sun.
The dust analyzer on the Cassini mission will determine the interstellar dust
flux outside Venus' orbit and will provide also some compositional information.
Techniques to identify the ISD flux levels at 1~AU are described that can
quantify the interstellar dust flux in high-Earth orbit (outside the debris
belts) and provide chemical composition information of galactic dust.Comment: Accepted for Journal of Geophysical Research, 6 figures, Late