8,600 research outputs found
Mass and orbit constraints of the gamma-ray binary LS 5039
We present the results of space-based photometric and ground-based
spectroscopic observing campaigns on the gamma-ray binary LS 5039. The new
orbital and physical parameters of the system are similar to former results,
except we found a lower eccentricity. Our MOST-data show that any broad-band
optical photometric variability at the orbital period is below the 2 mmag
level. Light curve simulations support the lower value of eccentricity and
imply that the mass of the compact object is higher than 1.8 solar masses.Comment: 2 pages, 1 figure (with 2 panels); to be published in the
Proceedings: From Interacting Binaries to Exoplanets: Essential Modeling
Tools, IAU Symposium 282 (18-22 July, 2011, Tatranska Lomnica, Slovakia
Interior Structures and Tidal Heating in the TRAPPIST-1 Planets
With seven planets, the TRAPPIST-1 system has the largest number of
exoplanets discovered in a single system so far. The system is of
astrobiological interest, because three of its planets orbit in the habitable
zone of the ultracool M dwarf. Assuming the planets are composed of
non-compressible iron, rock, and HO, we determine possible interior
structures for each planet. To determine how much tidal heat may be dissipated
within each planet, we construct a tidal heat generation model using a single
uniform viscosity and rigidity for each planet based on the planet's
composition. With the exception of TRAPPIST-1c, all seven of the planets have
densities low enough to indicate the presence of significant HO in some
form. Planets b and c experience enough heating from planetary tides to
maintain magma oceans in their rock mantles; planet c may have eruptions of
silicate magma on its surface, which may be detectable with next-generation
instrumentation. Tidal heat fluxes on planets d, e, and f are lower, but are
still twenty times higher than Earth's mean heat flow. Planets d and e are the
most likely to be habitable. Planet d avoids the runaway greenhouse state if
its albedo is 0.3. Determining the planet's masses within
to 0.5 Earth masses would confirm or rule out the presence of HO and/or
iron in each planet, and permit detailed models of heat production and
transport in each planet. Understanding the geodynamics of ice-rich planets f,
g, and h requires more sophisticated modeling that can self-consistently
balance heat production and transport in both rock and ice layers.Comment: 34 pages, 3 tables, 4 figures. Accepted for publication in Astronomy
& Astrophysics -- final version including corrections made in proof stag
Scattering quantum random-walk search with errors
We analyze the realization of a quantum-walk search algorithm in a passive,
linear optical network. The specific model enables us to consider the effect of
realistic sources of noise and losses on the search efficiency. Photon loss
uniform in all directions is shown to lead to the rescaling of search time.
Deviation from directional uniformity leads to the enhancement of the search
efficiency compared to uniform loss with the same average. In certain cases
even increasing loss in some of the directions can improve search efficiency.
We show that while we approach the classical limit of the general search
algorithm by introducing random phase fluctuations, its utility for searching
is lost. Using numerical methods, we found that for static phase errors the
averaged search efficiency displays a damped oscillatory behaviour that
asymptotically tends to a non-zero value.Comment: 10 pages, 10 figures. Two figures added for clarity, also made
improvements to the tex
Rapid convergence of time-averaged frequency in phase synchronized systems
Numerical and experimental evidence is presented to show that many phase
synchronized systems of non-identical chaotic oscillators, where the chaotic
state is reached through a period-doubling cascade, show rapid convergence of
the time-averaged frequency. The speed of convergence toward the natural
frequency scales as the inverse of the measurement period. The results also
suggest an explanation for why such chaotic oscillators can be phase
synchronized.Comment: 6 pages, 9 figure
Determination of the cosmic far-infrared background level with the ISOPHOT instrument
The cosmic infrared background (CIRB) consists mainly of the integrated light
of distant galaxies. In the far-infrared the current estimates of its surface
brightness are based on the measurements of the COBE satellite. Independent
confirmation of these results is still needed from other instruments. In this
paper we derive estimates of the far-infrared CIRB using measurements made with
the ISOPHOT instrument aboard the ISO satellite. The results are used to seek
further confirmation of the CIRB levels that have been derived by various
groups using the COBE data. We study three regions of very low cirrus emission.
The surface brightness observed with the ISOPHOT instrument at 90, 150, and 180
um is correlated with hydrogen 21 cm line data from the Effelsberg radio
telescope. Extrapolation to zero hydrogen column density gives an estimate for
the sum of extragalactic signal plus zodiacal light. The zodiacal light is
subtracted using ISOPHOT data at shorter wavelengths. Thus, the resulting
estimate of the far-infrared CIRB is based on ISO measurements alone. In the
range 150 to 180 um, we obtain a CIRB value of 1.08+-0.32+-0.30 MJy/sr quoting
statistical and systematic errors separately. In the 90 um band, we obtain a
2-sigma upper limit of 2.3 MJy/sr. The estimates derived from ISOPHOT
far-infrared maps are consistent with the earlier COBE results.Comment: Accepted for publication in A&A, 17 page
Application of osmolality for the determination of water activity and the modelling of cloud formation
International audienceA simple approach is suggested here to give reliable estimates on the Raoult term of the Köhler equation when calculating critical supersaturation (Sc) for real atmospheric samples. Water activity is calculated from osmolality and thus the original Köhler equation can be applied avoiding the difficulties with unknown molecular weights, solubilities, van't Hoff factors of aerosol constituents and also the interactions in the growing droplet. First, water activity calculated from osmolality data was compared to literature values both for electrolytes and a non-electrolyte. Then the applicability of the approach was demonstrated by generating Köhler curves from osmolality derived and literature activity data as well as by using the simplified Köhler equation. Sc values calculated with the osmolality approach fitted those obtained by using literature water activity data within a relative deviation of less than 0.3%, 0.8%, 1.1% and 3.4% for sucrose, CaCl2, NaCl and H2SO4, respectively, while the corresponding errors with the simplified Köhler equation were 11%, 8.5%, 4.5% and 19% in the dry nucleus size range of 20 nm to 100 nm. Finally, the osmolality method was used to show how considerably Sc is underestimated for organic acids if complete dissociation is assumed. The method described in this paper can be applied to real atmospheric samples (aerosol extracts, fog water or cloud water) thus improving the reliability of estimates on critical supersaturation and critical droplet diameter in atmospheric modelling
Thermal Infrared Observations of Asteroid (99942) Apophis with Herschel
The near-Earth asteroid (99942) Apophis is a potentially hazardous asteroid.
We obtained far-infrared observations of this asteroid with the Herschel Space
Observatory's PACS instrument at 70, 100, and 160 micron. These were taken at
two epochs in January and March 2013 during a close Earth encounter. These
first thermal measurements of Apophis were taken at similar phase angles before
and after opposition. We performed a detailed thermophysical model analysis by
using the spin and shape model recently derived from applying a 2-period
Fourier series method to a large sample of well-calibrated photometric
observations. We find that the tumbling asteroid Apophis has an elongated shape
with a mean diameter of 375 m (of an equal volume sphere) and a
geometric V-band albedo of 0.30. We find a thermal inertia in
the range 250-800 JmsK (best solution at 600
JmsK), which can be explained by a mixture of low
conductivity fine regolith with larger rocks and boulders of high thermal
inertia on the surface. The thermal inertia, and other similarities with
(25143) Itokawa indicate that Apophis might also have a rubble-pile structure.
If we combine the new size value with the assumption of an Itokawa-like density
and porosity we estimate a mass between 4.4 and 6.2 10 kg which is more
than 2-3 times larger than previous estimates. We expect that the newly derived
properties will influence impact scenario studies and influence the long-term
orbit predictions of Apophis.Comment: Accepted for publication in Astronomy & Astrophysics, 21 pages, 8
figures, 2 table
Full-revivals in 2-D Quantum Walks
Recurrence of a random walk is described by the Polya number. For quantum
walks, recurrence is understood as the return of the walker to the origin,
rather than the full-revival of its quantum state. Localization for two
dimensional quantum walks is known to exist in the sense of non-vanishing
probability distribution in the asymptotic limit. We show on the example of the
2-D Grover walk that one can exploit the effect of localization to construct
stationary solutions. Moreover, we find full-revivals of a quantum state with a
period of two steps. We prove that there cannot be longer cycles for a
four-state quantum walk. Stationary states and revivals result from
interference which has no counterpart in classical random walks
Robust Weak Chimeras in Oscillator Networks with Delayed Linear and Quadratic Interactions
This is the author's accepted version. The final version is available from APS via the DOI in this recordWe present an approach to generate chimera dynamics (localized frequency synchrony) in oscillator networks with two groups of (at least) two elements using a general method based on delayed interaction with linear and quadratic terms. The coupling design yields robust chimeras through a phase-model based design of the delay and the ratio of linear and quadratic components of the interactions. We demonstrate the method in the Brusselator model and experiments with electrochemical oscillators. The technique opens the way to directly bridge theory for phase models and the dynamics of real-world oscillator networks.CB has received funding from the People Programme (Marie Curie Actions) of the European Union’s Seventh Framework Programme (FP7/2007–2013) under REA grant agreement no. 626111. IZK acknowledges support from National Science Foundation CHE-1465013 grant
Impeded solid state reactions and transformations in ceramic catalysts supports and catalysts
Impeded chemical reactions and impeded polymorphous transformation in materials are discussed, as desired effects, for stabilization of ceramic catalyst supports and ceramic based catalysts. This paper gives a short overview about the possibilities of slowing down the aging processes in ceramic catalyst supports and catalysts. Special attention is given to alumina and titania based catalysts
- …