Numerical and experimental evidence is presented to show that many phase
synchronized systems of non-identical chaotic oscillators, where the chaotic
state is reached through a period-doubling cascade, show rapid convergence of
the time-averaged frequency. The speed of convergence toward the natural
frequency scales as the inverse of the measurement period. The results also
suggest an explanation for why such chaotic oscillators can be phase
synchronized.Comment: 6 pages, 9 figure