52 research outputs found

    Software systems for operation, control, and monitoring of the EBEX instrument

    Full text link
    We present the hardware and software systems implementing autonomous operation, distributed real-time monitoring, and control for the EBEX instrument. EBEX is a NASA-funded balloon-borne microwave polarimeter designed for a 14 day Antarctic flight that circumnavigates the pole. To meet its science goals the EBEX instrument autonomously executes several tasks in parallel: it collects attitude data and maintains pointing control in order to adhere to an observing schedule; tunes and operates up to 1920 TES bolometers and 120 SQUID amplifiers controlled by as many as 30 embedded computers; coordinates and dispatches jobs across an onboard computer network to manage this detector readout system; logs over 3~GiB/hour of science and housekeeping data to an onboard disk storage array; responds to a variety of commands and exogenous events; and downlinks multiple heterogeneous data streams representing a selected subset of the total logged data. Most of the systems implementing these functions have been tested during a recent engineering flight of the payload, and have proven to meet the target requirements. The EBEX ground segment couples uplink and downlink hardware to a client-server software stack, enabling real-time monitoring and command responsibility to be distributed across the public internet or other standard computer networks. Using the emerging dirfile standard as a uniform intermediate data format, a variety of front end programs provide access to different components and views of the downlinked data products. This distributed architecture was demonstrated operating across multiple widely dispersed sites prior to and during the EBEX engineering flight.Comment: 11 pages, to appear in Proceedings of SPIE Astronomical Telescopes and Instrumentation 2010; adjusted metadata for arXiv submissio

    EBEX: A balloon-borne CMB polarization experiment

    Get PDF
    EBEX is a NASA-funded balloon-borne experiment designed to measure the polarization of the cosmic microwave background (CMB). Observations will be made using 1432 transition edge sensor (TES) bolometric detectors read out with frequency multiplexed SQuIDs. EBEX will observe in three frequency bands centered at 150, 250, and 410 GHz, with 768, 384, and 280 detectors in each band, respectively. This broad frequency coverage is designed to provide valuable information about polarized foreground signals from dust. The polarized sky signals will be modulated with an achromatic half wave plate (AHWP) rotating on a superconducting magnetic bearing (SMB) and analyzed with a fixed wire grid polarizer. EBEX will observe a patch covering ~1% of the sky with 8' resolution, allowing for observation of the angular power spectrum from \ell = 20 to 1000. This will allow EBEX to search for both the primordial B-mode signal predicted by inflation and the anticipated lensing B-mode signal. Calculations to predict EBEX constraints on r using expected noise levels show that, for a likelihood centered around zero and with negligible foregrounds, 99% of the area falls below r = 0.035. This value increases by a factor of 1.6 after a process of foreground subtraction. This estimate does not include systematic uncertainties. An engineering flight was launched in June, 2009, from Ft. Sumner, NM, and the long duration science flight in Antarctica is planned for 2011. These proceedings describe the EBEX instrument and the North American engineering flight.Comment: 12 pages, 9 figures, Conference proceedings for SPIE Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy V (2010

    The Simons Observatory: Beam characterization for the Small Aperture Telescopes

    Full text link
    We use time-domain simulations of Jupiter observations to test and develop a beam reconstruction pipeline for the Simons Observatory Small Aperture Telescopes. The method relies on a map maker that estimates and subtracts correlated atmospheric noise and a beam fitting code designed to compensate for the bias caused by the map maker. We test our reconstruction performance for four different frequency bands against various algorithmic parameters, atmospheric conditions and input beams. We additionally show the reconstruction quality as function of the number of available observations and investigate how different calibration strategies affect the beam uncertainty. For all of the cases considered, we find good agreement between the fitted results and the input beam model within a ~1.5% error for a multipole range l = 30 - 700.Comment: 22 pages, 21 figures, to be submitted to Ap

    GTC Follow-up Observations of Very Metal-Poor Star Candidates from DESI

    Full text link
    The observations from the Dark Energy Spectroscopic Instrument (DESI) will significantly increase the numbers of known extremely metal-poor stars by a factor of ~ 10, improving the sample statistics to study the early chemical evolution of the Milky Way and the nature of the first stars. In this paper we report high signal-to-noise follow-up observations of 9 metal-poor stars identified during the DESI commissioning with the Optical System for Imaging and low-Intermediate-Resolution Integrated Spectroscopy (OSIRIS) instrument on the 10.4m Gran Telescopio Canarias (GTC). The analysis of the data using a well-vetted methodology confirms the quality of the DESI spectra and the performance of the pipelines developed for the data reduction and analysis of DESI data.Comment: 13 pages, 4 figures, to be submitted to ApJ, data available from https://doi.org/10.5281/zenodo.802084

    The DESI Bright Galaxy Survey: Final Target Selection, Design, and Validation

    Get PDF
    Over the next 5 yr, the Dark Energy Spectroscopic Instrument (DESI) will use 10 spectrographs with 5000 fibers on the 4 m Mayall Telescope at Kitt Peak National Observatory to conduct the first Stage IV dark energy galaxy survey. At z 10 million galaxies spanning 14,000 deg2 . In this work, we present and validate the final BGS target selection and survey design. From the Legacy Surveys, BGS will target an r 80% fiber assignment efficiency. Finally, BGS Bright and BGS Faint will achieve >95% redshift success over any observing condition. BGS meets the requirements for an extensive range of scientific applications. BGS will yield the most precise baryon acoustic oscillation and redshift-space distortion measurements at z < 0.4. It presents opportunities for new methods that require highly complete and dense samples (e.g., N-point statistics, multitracers). BGS further provides a powerful tool to study galaxy populations and the relations between galaxies and dark matter

    The Simons Observatory: Beam characterization for the small aperture telescopes

    Get PDF
    We use time-domain simulations of Jupiter observations to test and develop a beam reconstruction pipeline for the Simons Observatory Small Aperture Telescopes. The method relies on a mapmaker that estimates and subtracts correlated atmospheric noise and a beam fitting code designed to compensate for the bias caused by the mapmaker. We test our reconstruction performance for four different frequency bands against various algorithmic parameters, atmospheric conditions, and input beams. We additionally show the reconstruction quality as a function of the number of available observations and investigate how different calibration strategies affect the beam uncertainty. For all of the cases considered, we find good agreement between the fitted results and the input beam model within an ∼1.5% error for a multipole range ℓ = 30–700 and an ∼0.5% error for a multipole range ℓ = 50–200. We conclude by using a harmonic-domain component separation algorithm to verify that the beam reconstruction errors and biases observed in our analysis do not significantly bias the Simons Observatory r-measuremen

    First implementation of TES bolometer arrays with SQUID-based multiplexed readout on a balloon-borne platform

    Full text link
    EBEX (the E and B EXperiment) is a balloon-borne telescope designed to measure the polarisation of the cosmic microwave background radiation. During a two week long duration science flight over Antarctica, EBEX will operate 768, 384 and 280 spider-web transition edge sensor (TES) bolometers at 150, 250 and 410 GHz, respectively. The 10-hour EBEX engineering flight in June 2009 over New Mexico and Arizona provided the first usage of both a large array of TES bolometers and a Superconducting QUantum Interference Device (SQUID) based multiplexed readout in a space-like environment. This successful demonstration increases the technology readiness level of these bolometers and the associated readout system for future space missions. A total of 82, 49 and 82 TES detectors were operated during the engineering flight at 150, 250 and 410 GHz. The sensors were read out with a new SQUID-based digital frequency domain multiplexed readout system that was designed to meet the low power consumption and robust autonomous operation requirements presented by a balloon experiment. Here we describe the system and the remote, automated tuning of the bolometers and SQUIDs. We compare results from tuning at float to ground, and discuss bolometer performance during fligh

    GTC follow-up observations of very metal-poor star candidates from DESI

    Get PDF
    The observations from the Dark Energy Spectroscopic Instrument (DESI) will significantly increase the numbers of known extremely metal-poor stars by a factor of ∼10, improving the sample statistics to study the early chemical evolution of the Milky Way and the nature of the first stars. In this paper we report follow-up observations with high signal-to-noise ratio of nine metal-poor stars identified during the DESI commissioning with the Optical System for Imaging and Low-Resolution Integrated Spectroscopy (OSIRIS) instrument on the 10.4 m Gran Telescopio Canarias. The analysis of the data using a well-vetted methodology confirms the quality of the DESI spectra and the performance of the pipelines developed for the data reduction and analysis of DESI data

    CMB-S4: Forecasting Constraints on Primordial Gravitational Waves

    Full text link
    CMB-S4---the next-generation ground-based cosmic microwave background (CMB) experiment---is set to significantly advance the sensitivity of CMB measurements and enhance our understanding of the origin and evolution of the Universe, from the highest energies at the dawn of time through the growth of structure to the present day. Among the science cases pursued with CMB-S4, the quest for detecting primordial gravitational waves is a central driver of the experimental design. This work details the development of a forecasting framework that includes a power-spectrum-based semi-analytic projection tool, targeted explicitly towards optimizing constraints on the tensor-to-scalar ratio, rr, in the presence of Galactic foregrounds and gravitational lensing of the CMB. This framework is unique in its direct use of information from the achieved performance of current Stage 2--3 CMB experiments to robustly forecast the science reach of upcoming CMB-polarization endeavors. The methodology allows for rapid iteration over experimental configurations and offers a flexible way to optimize the design of future experiments given a desired scientific goal. To form a closed-loop process, we couple this semi-analytic tool with map-based validation studies, which allow for the injection of additional complexity and verification of our forecasts with several independent analysis methods. We document multiple rounds of forecasts for CMB-S4 using this process and the resulting establishment of the current reference design of the primordial gravitational-wave component of the Stage-4 experiment, optimized to achieve our science goals of detecting primordial gravitational waves for r>0.003r > 0.003 at greater than 5σ5\sigma, or, in the absence of a detection, of reaching an upper limit of r<0.001r < 0.001 at 95%95\% CL.Comment: 24 pages, 8 figures, 9 tables, submitted to ApJ. arXiv admin note: text overlap with arXiv:1907.0447
    corecore