160 research outputs found

    Prediction of the Atomization Energy of Molecules Using Coulomb Matrix and Atomic Composition in a Bayesian Regularized Neural Networks

    Full text link
    Exact calculation of electronic properties of molecules is a fundamental step for intelligent and rational compounds and materials design. The intrinsically graph-like and non-vectorial nature of molecular data generates a unique and challenging machine learning problem. In this paper we embrace a learning from scratch approach where the quantum mechanical electronic properties of molecules are predicted directly from the raw molecular geometry, similar to some recent works. But, unlike these previous endeavors, our study suggests a benefit from combining molecular geometry embedded in the Coulomb matrix with the atomic composition of molecules. Using the new combined features in a Bayesian regularized neural networks, our results improve well-known results from the literature on the QM7 dataset from a mean absolute error of 3.51 kcal/mol down to 3.0 kcal/mol.Comment: Under review ICANN 201

    Hemoglobin E syndromes in Pakistani population

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Hemoglobin E is an important hemoglobin variant with a worldwide distribution. A number of hemoglobinopathies have been reported from Pakistan. However a comprehensive description of hemoglobin E syndromes for the country was never made. This study aimed to describe various hemoglobin E disorders based on hematological parameters and chromatography. The sub-aim was to characterize hemoglobin E at molecular level.</p> <p>Methods</p> <p>This was a hospital based study conducted prospectively for a period of one year extending from January 1 to December 31, 2008. EDTA blood samples were analyzed for completed blood counts and hemoglobin variants through automated hematology analyzer and Bio-Rad beta thalassaemia short program respectively. Six samples were randomly selected to characterize HbE at molecular level through RFLP-PCR utilizing <it>Mnl</it>I restriction enzyme.</p> <p>Results</p> <p>During the study period, 11403 chromatograms were analyzed and Hb E was detected in 41 (or 0.36%) samples. Different hemoglobin E syndromes identified were HbEA (n = 20 or 49%), HbE/β-thalassemia (n = 14 or 34%), HbEE (n = 6 or 15%) and HbE/HbS (n = 1 or 2%). Compound heterozygosity for HbE and beta thalassaemia was found to be the most severely affected phenotype. RFLP-PCR utilizing <it>Mnl</it>I successfully characterized HbE at molecular level in six randomly selected samples.</p> <p>Conclusions</p> <p>Various HbE phenotypes are prevalent in Pakistan with HbEA and HbE/β thalassaemia representing the most common syndromes. Chromatography cannot only successfully identify hemoglobin E but also assist in further characterization into its phenotype including compound heterozygosity. Definitive diagnosis of HbE can easily be achieved through RFLP-PCR.</p

    Allergen particle binding by human primary bronchial epithelial cells is modulated by surfactant protein D

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Allergen-containing subpollen particles (SPP) are released from whole plant pollen upon contact with water or even high humidity. Because of their size SPP can preferentially reach the lower airways where they come into contact with surfactant protein (SP)-D. Our previous work demonstrated that SP-D increases the uptake of SPP by alveolar macrophages. In the present study, we investigated the uptake of SPP in human primary epithelial cells and the potential modulation by SP-D. The patho-physiological consequence was evaluated by measurement of pro-inflammatory mediators.</p> <p>Methods</p> <p>SPP were isolated from timothy grass and subsequently fluorescently labelled. Human primary bronchial epithelial cells were incubated with SPP or polystyrene particles (PP) in the presence and absence of surfactant protein D. In addition, different sizes and surface charges of the PP were studied. Particle uptake was evaluated by flow cytometry and confocal microscopy. Soluble mediators were measured by enzyme linked immunosorbent assay or bead array.</p> <p>Results</p> <p>SPP were taken up by primary epithelial cells in a dose dependent manner. This uptake was coincided with secretion of Interleukin (IL)-8. SP-D increased the fraction of bronchial epithelial cells that bound SPP but not the fraction of cells that internalized SPP. SPP-induced secretion of IL-8 was further increased by SP-D. PP were bound and internalized by epithelial cells but this was not modulated by SP-D.</p> <p>Conclusions</p> <p>Epithelial cells bind and internalize SPP and PP which leads to increased IL-8 secretion. SP-D promotes attachment of SPP to epithelial cells and may thus be involved in the inflammatory response to inhaled allergen.</p

    miR-27b Targets KSRP to Coordinate TLR4-Mediated Epithelial Defense against Cryptosporidium parvum Infection

    Get PDF
    Cryptosporidium is a protozoan parasite that infects the gastrointestinal epithelium and causes a diarrheal disease. Toll-like receptor (TLR)- and NF-κB-mediated immune responses from epithelial cells, such as production of antimicrobial peptides and generation of reactive nitrogen species, are important components of the host's defense against cryptosporidial infection. Here we report data demonstrating a role for miR-27b in the regulation of TLR4/NF-κB-mediated epithelial anti-Cryptosporidium parvum responses. We found that C. parvum infection induced nitric oxide (NO) production in host epithelial cells in a TLR4/NF-κB-dependent manner, with the involvement of the stabilization of inducible NO synthase (iNOS) mRNA. C. parvum infection of epithelial cells activated NF-κB signaling to increase transcription of the miR-27b gene. Meanwhile, downregulation of KH-type splicing regulatory protein (KSRP) was detected in epithelial cells following C. parvum infection. Importantly, miR-27b targeted the 3′-untranslated region of KSRP, resulting in translational suppression. C. parvum infection decreased KSRP expression through upregulating miR-27b. Functional manipulation of KSRP or miR-27b caused reciprocal alterations in iNOS mRNA stability in infected cells. Forced expression of KSRP and inhibition of miR-27b resulted in an increased burden of C. parvum infection. Downregulation of KSRP through upregulating miR-27b was also detected in epithelial cells following LPS stimulation. These data suggest that miR-27b targets KSRP and modulates iNOS mRNA stability following C. parvum infection, a process that may be relevant to the regulation of epithelial anti-microbial defense in general

    A short history of the 5-HT2C receptor: from the choroid plexus to depression, obesity and addiction treatment

    Get PDF
    This paper is a personal account on the discovery and characterization of the 5-HT2C receptor (first known as the 5- HT1C receptor) over 30 years ago and how it translated into a number of unsuspected features for a G protein-coupled receptor (GPCR) and a diversity of clinical applications. The 5-HT2C receptor is one of the most intriguing members of the GPCR superfamily. Initially referred to as 5-HT1CR, the 5-HT2CR was discovered while studying the pharmacological features and the distribution of [3H]mesulergine-labelled sites, primarily in the brain using radioligand binding and slice autoradiography. Mesulergine (SDZ CU-085), was, at the time, best defined as a ligand with serotonergic and dopaminergic properties. Autoradiographic studies showed remarkably strong [3H]mesulergine-labelling to the rat choroid plexus. [3H]mesulergine-labelled sites had pharmacological properties different from, at the time, known or purported 5-HT receptors. In spite of similarities with 5-HT2 binding, the new binding site was called 5-HT1C because of its very high affinity for 5-HT itself. Within the following 10 years, the 5-HT1CR (later named 5- HT2C) was extensively characterised pharmacologically, anatomically and functionally: it was one of the first 5-HT receptors to be sequenced and cloned. The 5-HT2CR is a GPCR, with a very complex gene structure. It constitutes a rarity in theGPCR family: many 5-HT2CR variants exist, especially in humans, due to RNA editing, in addition to a few 5-HT2CR splice variants. Intense research led to therapeutically active 5-HT2C receptor ligands, both antagonists (or inverse agonists) and agonists: keeping in mind that a number of antidepressants and antipsychotics are 5- HT2CR antagonists/inverse agonists. Agomelatine, a 5-HT2CR antagonist is registered for the treatment of major depression. The agonist Lorcaserin is registered for the treatment of aspects of obesity and has further potential in addiction, especially nicotine/ smoking. There is good evidence that the 5-HT2CR is involved in spinal cord injury-induced spasms of the lower limbs, which can be treated with 5-HT2CR antagonists/inverse agonists such as cyproheptadine or SB206553. The 5-HT2CR may play a role in schizophrenia and epilepsy. Vabicaserin, a 5-HT2CR agonist has been in development for the treatment of schizophrenia and obesity, but was stopped. As is common, there is potential for further indications for 5-HT2CR ligands, as suggested by a number of preclinical and/or genome-wide association studies (GWAS) on depression, suicide, sexual dysfunction, addictions and obesity. The 5-HT2CR is clearly affected by a number of established antidepressants/antipsychotics and may be one of the culprits in antipsychotic-induced weight gain

    NF-kappaB p65-Dependent Transactivation of miRNA Genes following Cryptosporidium parvum Infection Stimulates Epithelial Cell Immune Responses

    Get PDF
    Cryptosporidium parvum is a protozoan parasite that infects the gastrointestinal epithelium and causes diarrheal disease worldwide. Innate epithelial immune responses are key mediators of the host's defense to C. parvum. MicroRNAs (miRNAs) regulate gene expression at the posttranscriptional level and are involved in regulation of both innate and adaptive immune responses. Using an in vitro model of human cryptosporidiosis, we analyzed C. parvum-induced miRNA expression in biliary epithelial cells (i.e., cholangiocytes). Our results demonstrated differential alterations in the mature miRNA expression profile in cholangiocytes following C. parvum infection or lipopolysaccharide stimulation. Database analysis of C. parvum-upregulated miRNAs revealed potential NF-κB binding sites in the promoter elements of a subset of miRNA genes. We demonstrated that mir-125b-1, mir-21, mir-30b, and mir-23b-27b-24-1 cluster genes were transactivated through promoter binding of the NF-κB p65 subunit following C. parvum infection. In contrast, C. parvum transactivated mir-30c and mir-16 genes in cholangiocytes in a p65-independent manner. Importantly, functional inhibition of selected p65-dependent miRNAs in cholangiocytes increased C. parvum burden. Thus, we have identified a panel of miRNAs regulated through promoter binding of the NF-κB p65 subunit in human cholangiocytes in response to C. parvum infection, a process that may be relevant to the regulation of epithelial anti-microbial defense in general

    HIV-1 gp120 Induces Expression of IL-6 through a Nuclear Factor-Kappa B-Dependent Mechanism: Suppression by gp120 Specific Small Interfering RNA

    Get PDF
    In addition to its role in virus entry, HIV-1 gp120 has also been implicated in HIV-associated neurocognitive disorders. However, the mechanism(s) responsible for gp120-mediated neuroinflammation remain undefined. In view of increased levels of IL-6 in HIV-positive individuals with neurological manifestations, we sought to address whether gp120 is involved in IL-6 over-expression in astrocytes. Transfection of a human astrocyte cell line with a plasmid encoding gp120 resulted in increased expression of IL-6 at the levels of mRNA and protein by 51.3±2.1 and 11.6±2.2 fold respectively; this effect of gp120 on IL-6 expression was also demonstrated using primary human fetal astrocytes. A similar effect on IL-6 expression was observed when primary astrocytes were treated with gp120 protein derived from different strains of X4 and R5 tropic HIV-1. The induction of IL-6 could be abrogated by use of gp120-specific siRNA. Furthermore, this study showed that the NF-κB pathway is involved in gp120-mediated IL-6 over-expression, as IKK-2 and IKKβ inhibitors inhibited IL-6 expression by 56.5% and 60.8%, respectively. These results were also confirmed through the use of NF-κB specific siRNA. We also showed that gp120 could increase the phosphorylation of IκBα. Furthermore, gp120 transfection in the SVGA cells increased translocation of NF-κB from cytoplasm to nucleus. These results demonstrate that HIV-1 gp120-mediated over-expression of IL-6 in astrocytes is one mechanism responsible for neuroinflammation in HIV-infected individuals and this is mediated by the NF-κB pathway

    Cardiomyocyte Specific Ablation of p53 Is Not Sufficient to Block Doxorubicin Induced Cardiac Fibrosis and Associated Cytoskeletal Changes

    Get PDF
    Doxorubicin (Dox) is an anthracycline used to effectively treat several forms of cancer. Unfortunately, the use of Dox is limited due to its association with cardiovascular complications which are manifested as acute and chronic cardiotoxicity. The pathophysiological mechanism of Dox induced cardiotoxicity appears to involve increased expression of the tumor suppressor protein p53 in cardiomyocytes, followed by cellular apoptosis. It is not known whether downregulation of p53 expression in cardiomyocytes would result in decreased rates of myocardial fibrosis which occurs in response to cardiomyocyte loss. Further, it is not known whether Dox can induce perivascular necrosis and associated fibrosis in the heart. In this study we measured the effects of acute Dox treatment on myocardial and perivascular apoptosis and fibrosis in a conditional knockout (CKO) mouse model system which harbours inactive p53 alleles specifically in cardiomyocytes. CKO mice treated with a single dose of Dox (20 mg/kg), did not display lower levels of myocardial apoptosis or reactive oxygen and nitrogen species (ROS/RNS) compared to control mice with intact p53 alleles. Interestingly, CKO mice also displayed higher levels of interstitial and perivascular fibrosis compared to controls 3 or 7 days after Dox treatment. Additionally, the decrease in levels of the microtubule protein α-tubulin, which occurs in response to Dox treatment, was not prevented in CKO mice. Overall, these results indicate that selective loss of p53 in cardiomyocytes is not sufficient to prevent Dox induced myocardial ROS/RNS generation, apoptosis, interstitial fibrosis and perivascular fibrosis. Further, these results support a role for p53 independent apoptotic pathways leading to Dox induced myocardial damage and highlight the importance of vascular lesions in Dox induced cardiotoxicity

    Styrene maleic acid recovers proteins from mammalian cells and tissues while avoiding significant cell death.

    Get PDF
    Detection of protein biomarkers is an important tool for medical diagnostics, typically exploiting concentration of particular biomarkers or biomarker release from tissues. We sought to establish whether proteins not normally released by living cells can be extracted without harming cells, with a view to extending this into biomarker harvest for medical diagnosis and other applications. Styrene maleic acid (SMA) is a polymer that extracts nanodiscs of biological membranes (containing membrane proteins) from cells. Hitherto it has been used to harvest SMA-lipid-membrane protein particles (SMALP) for biochemical study, by destroying the living cellular specimen. In this study, we applied SMA at low concentration to human primary cardiovascular cells and rat vascular tissue, to 'biopsy' cell proteins while avoiding significant reductions in cell viability. SMA at 6.25 parts per million harvested proteins from cells and tissues without causing significant release of cytosolic dye (calcein) or reduction in cell viability at 24 and 72 hours post-SMA (MTT assay). A wide range of proteins were recovered (20-200 kDa) and a number identified by mass spectrometry: this confirmed protein recovery from plasma membrane, intracellular membranes and cell cytosol without associated cell death. These data demonstrate the feasibility of non-lethally sampling proteins from cells, greatly extending our sampling capability, which could yield new physiological and/or pathological biomarkers
    corecore