8 research outputs found

    Cbp3–Cbp6 interacts with the yeast mitochondrial ribosomal tunnel exit and promotes cytochrome b synthesis and assembly

    Get PDF
    A complex specifically required for the biogenesis of the respiratory chain component cytochrome b binds to the tunnel exit of yeast mitochondrial ribosomes to coordinate protein synthesis and assembly

    Organization of mitochondrial gene expression in yeast : Specific features of organellar protein synthesis

    No full text
    Mitochondria contain their own genetic system, encoding key subunits of the oxidative phosphorylation system. These subunits are expressed by an organelle-specific gene expression machinery. This work revealed a number of fundamental aspects of mitochondrial gene expression and provides evidence that this process is organized in a unique and organelle-specific manner which likely evolved to optimize protein synthesis and assembly in mitochondria. Most importantly, improving the experimental handling of ribosomes we could show that mitochondrial ribosomes are organized in large assemblies that we termed MIOREX complexes. Ribosomes present in these complexes organize gene expression by recruiting multiple factors required for post-transcriptional steps. In addition, we could reveal mechanisms by which ribosome-interactor complexes modulate and coordinate the expression and assembly of the respiratory chain subunits. For example we showed that the Cbp3-Cbp6 complex binds to the ribosome in proximity to the tunnel exit to coordinate synthesis and assembly of cytochrome b. This location perfectly positions Cbp3-Cbp6 for direct binding to newly synthesized cytochrome b and permits Cbp3-Cbp6 to establish a feedback loop that allows modulation of cytochrome b synthesis in response to assembly efficiency. Likewise the interaction of the membrane-anchor proteins Mba1 and Mdm38 with the tunnel exit region enables them to participate in the translation of the two intron-encoding genes COX1 and COB in addition to their role in membrane insertion.  In summary, work presented in this thesis shows that mitochondrial gene expression is a highly organized and regulated process. The concepts and technical innovations will facilitate the elucidation of many additional and important aspects and therefore contribute to the general understanding of how proteins are synthesized in mitochondria.At the time of the doctoral defense, the following paper was unpublished and had a status as follows: Paper 4: Manuscript.</p

    Organization of Mitochondrial Gene Expression in Two Distinct Ribosome-Containing Assemblies

    Get PDF
    Mitochondria contain their own genetic system that provides subunits of the complexes driving oxidative phosphorylation. A quarter of the mitochondrial proteome participates in gene expression, but how all these factors are orchestrated and spatially organized is currently unknown. Here, we established a method to purify and analyze native and intact complexes of mitochondrial ribosomes. Quantitative mass spectrometry revealed extensive interactions of ribosomes with factors involved in all the steps of posttranscriptional gene expression. These interactions result in large expressosome-like assemblies that we termed mitochondrial organization of gene expression (MIOREX) complexes. Superresolution microscopy revealed that most MIOREX complexes are evenly distributed throughout the mitochondrial network, whereas a subset is present as nucleoid-MIOREX complexes that unite the whole spectrum of organellar gene expression. Our work therefore provides a conceptual framework for the spatial organization of mitochondrial protein synthesis that likely developed to facilitate gene expression in the organelle
    corecore