53 research outputs found
Induced Pluripotent Stem Cell-Derived Disease Model for Catecholaminergic Polymorphic Ventricular Tachycardia
Human induced pluripotent stem cells (hiPSCs) offer significant opportunities for cardiac research. With this technology, it is possible to create patient-specific stem cell lines and differentiate them into cardiomyocytes for cardiac research. hiPSC technology has created many expectations for new therapeutic possibilities, and it holds promise for use in drug-testing platforms and in patient-specific drug therapy optimization, as well as later in regenerative medicine.Catecholaminergic polymorphic ventricular tachycardia (CPVT) is an inherited, highly lethal arrhythmogenic cardiac disorder. It is primarily caused by cardiac ryanodine receptor gene (RyR2) mutations that result in abnormal calcium release from the sarcoplasmic reticulum to the cytosol, leading to the generation of afterdepolarizations and triggered activity. The estimated clinical prevalence of CPVT is 1:10000. Intracellular calcium ions are crucial to the function of the heart muscle, and disturbances in this process can have fatal consequences, as observed in CPVT. Understanding the mechanisms of arrhythmia and the role of intracellular calcium in CPVT pathophysiology is important for improving disease prevention, diagnosis, and treatment.The main objective of this work was to develop and characterize models of cardiac cells and to develop and improve techniques for studying electrical field stimulation and calcium cycling of cardiomyocytes. Utilizing electrical field stimulation, the orientation and maturation of neonatal rat cardiomyocytes and the increase in the beating rate of an in vitro disease model for CPVT were studied. For the cell model of CPVT, human iPSC-derived cardiomyocytes were obtained from CPVT patients carrying RyR2 mutations. These iPSCs disease models were used to study the disease mechanisms of CPVT, mutation-specific differences in intracellular calcium cycling and the effect of antiarrhythmic treatment of the cells. Mechanistic insights regarding CPVT arrhythmias and drug responses were also validated in the index patients. Additionally, a new calcium cycling analysis software tool was developed for characterizing abnormal intracellular calcium transients of disease-specific cardiomyocytes.The results of this work demonstrate that patient-specific iPSC-derived cardiomyocytes corresponded to the clinical phenotype in both the pathophysiology and drug responses of CPVT and encourages the continuation of disease modeling utilizing iPSCs. These studies also presented a new mechanism for arrhythmias in CPVT. These findings encourage the translation of findings in basic research to benefit patients in clinical practice, e.g., in the form of potentially new medications
Kantasoluista sykkiviÀ sydÀnsoluja
TÀsmÀdiagnostiikkaa, yksilöllistÀ hoidon optimointia ja rÀÀtÀlöityjÀ soluhoitoja
SydÀninfarkti aiheuttaa sydÀmen arpeutumisen ja toimintakyvyn menetyksen, koska sydÀn ei pysty itse korjaamaan vahingoittunutta aluetta. LisÀÀntynyt kantasolutietÀmys on herÀttÀnyt toiveita uusien hoitomuotojen kehittÀmisestÀ sydÀnlihastuhon korjaukseen. SitÀ onkin tutkittu viemÀllÀ sydÀmeen erilaisia aikuisessa ihmisessÀ olevia kantasoluja, mutta valitettavasti tutkimuksissa tehtyjen hoitojen teho on ollut toistaiseksi vÀhÀinen. Yksi erittÀin merkittÀvÀ uusi tutkimuksen kohde ovat niin sanotut erittÀin monikykyiset kantasolut (alkion kantasolut ja aikuisen uudelleenohjelmoidut kantasolut eli iPS-solut). NÀmÀ molemmat ovat kantasoluja, jotka pystyvÀt periaatteessa erilaistumaan kaikiksi yksilön soluiksi. iPS-soluja tuotetaan aikuisen jo erilaistuneista soluista, ja ne sisÀltÀvÀt saman genomin kaikkine virheineen kuin solunÀytteen luovuttajalla on. iPS-solujen erilaistaminen sydÀnsoluiksi onkin mahdollistanut esimerkiksi erilaisten perinnöllisten tautien patofysiologian tutkimista laboratorio-olosuhteissa. Kantasoluista erilaistettuja sydÀnlihassoluja tutkitaan myös lÀÀketestauksessa ja niiden uskotaan mullistavan sekÀ lÀÀkekehityksen ettÀ uusien lÀÀkkeiden turvallisuustestaukset
Kantasoluista sykkiviÀ sydÀnsoluja
TÀsmÀdiagnostiikkaa, yksilöllistÀ hoidon optimointia ja rÀÀtÀlöityjÀ soluhoitoja
SydÀninfarkti aiheuttaa sydÀmen arpeutumisen ja toimintakyvyn menetyksen, koska sydÀn ei pysty itse korjaamaan vahingoittunutta aluetta. LisÀÀntynyt kantasolutietÀmys on herÀttÀnyt toiveita uusien hoitomuotojen kehittÀmisestÀ sydÀnlihastuhon korjaukseen. SitÀ onkin tutkittu viemÀllÀ sydÀmeen erilaisia aikuisessa ihmisessÀ olevia kantasoluja, mutta valitettavasti tutkimuksissa tehtyjen hoitojen teho on ollut toistaiseksi vÀhÀinen. Yksi erittÀin merkittÀvÀ uusi tutkimuksen kohde ovat niin sanotut erittÀin monikykyiset kantasolut (alkion kantasolut ja aikuisen uudelleenohjelmoidut kantasolut eli iPS-solut). NÀmÀ molemmat ovat kantasoluja, jotka pystyvÀt periaatteessa erilaistumaan kaikiksi yksilön soluiksi. iPS-soluja tuotetaan aikuisen jo erilaistuneista soluista, ja ne sisÀltÀvÀt saman genomin kaikkine virheineen kuin solunÀytteen luovuttajalla on. iPS-solujen erilaistaminen sydÀnsoluiksi onkin mahdollistanut esimerkiksi erilaisten perinnöllisten tautien patofysiologian tutkimista laboratorio-olosuhteissa. Kantasoluista erilaistettuja sydÀnlihassoluja tutkitaan myös lÀÀketestauksessa ja niiden uskotaan mullistavan sekÀ lÀÀkekehityksen ettÀ uusien lÀÀkkeiden turvallisuustestaukset
Arrhythmia mechanisms in human induced pluripotent stem cell-derived cardiomyocytes
Despite major efforts by clinicians and researchers, cardiac arrhythmia remains a leading cause of morbidity and mortality in the world. Experimental work has relied on combining high-throughput strategies with standard molecular and electrophysiological studies, which are, to a great extent, based on the use of animal models. As this poses major challenges for translation, the progress in the development of novel antiarrhythmic agents and clinical care has been mostly disappointing. Recently, the advent of human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) has opened new avenues for both basic cardiac research and drug discovery: now there is an unlimited source of CMs of human origin, both from healthy individuals and patients with cardiac diseases. Understanding arrhythmic mechanisms is one the main use-cases of hiPSC-CMs, in addition to pharmacological cardiotoxicity and efficacy testing, in vitro disease modeling, developing patient-specific models and personalized drugs, and regenerative medicine. Here, we review the advances that the hiPSC-based modeling systems have brought so far regarding the understanding of both arrhythmogenic triggers and substrates, while also briefly speculating about the possibilities in the future.publishedVersionPeer reviewe
Data analytics for cardiac diseases
publishedVersionPeer reviewe
Antiarrhythmic Effects of Dantrolene in Patients with Catecholaminergic Polymorphic Ventricular Tachycardia and Replication of the Responses Using iPSC Models
Catecholaminergic polymorphic ventricular tachycardia (CPVT) is a highly malignant inherited arrhythmogenic disorder. Type 1 CPVT (CPVT1) is caused by cardiac ryanodine receptor (RyR2) gene mutations resulting in abnormal calcium release from sarcoplasmic reticulum. Dantrolene, an inhibitor of sarcoplasmic Ca2+ release, has been shown to rescue this abnormal Ca2+ release in vitro. We assessed the antiarrhythmic efficacy of dantrolene in six patients carrying various RyR2 mutations causing CPVT. The patients underwent exercise stress test before and after dantrolene infusion. Dantrolene reduced the number of premature ventricular complexes (PVCs) on average by 74% (range 33-97) in four patients with N-terminal or central mutations in the cytosolic region of the RyR2 protein, while dantrolene had no effect in two patients with mutations in or near the transmembrane domain. Induced pluripotent stem cells (iPSCs) were generated from all the patients and differentiated into spontaneously beating cardiomyocytes (CMs). The antiarrhythmic effect of dantrolene was studied in CMs after adrenaline stimulation by Ca2+ imaging. In iPSC derived CMs with RyR2 mutations in the N-terminal or central region, dantrolene suppressed the Ca2+ cycling abnormalities in 80% (range 65-97) of cells while with mutations in or near the transmembrane domain only in 23 or 32% of cells. In conclusion, we demonstrate that dantrolene given intravenously shows antiarrhythmic effects in a portion of CPVT1 patients and that iPSC derived CM models replicate these individual drug responses. These findings illustrate the potential of iPSC models to individualize drug therapy of inherited diseases.Peer reviewe
Automatic Optimization of an in Silico Model of Human iPSC Derived Cardiomyocytes Recapitulating Calcium Handling Abnormalities
The growing importance of human induced pluripotent stem cell-derived cardiomyoyctes (hiPSC-CMs), as patient-specific and disease-specific models for studying cellular cardiac electrophysiology or for preliminary cardiotoxicity tests, generated better understanding of hiPSC-CM biophysical mechanisms and great amount of action potential and calcium transient data. In this paper, we propose a new hiPSC-CM in silico model, with particular attention to Ca2+ handling. We used (i) the hiPSC-CM Paci2013 model as starting point, (ii) a new dataset of Ca2+ transient measurements to tune the parameters of the inward and outward Ca2+ fluxes of sarcoplasmic reticulum, and (iii) an automatic parameter optimization to fit action potentials and Ca2+ transients. The Paci2018 model simulates, together with the typical hiPSC-CM spontaneous action potentials, more refined Ca2+ transients and delayed afterdepolarizations-like abnormalities, which the old Paci2013 was not able to predict due to its mathematical formulation. The Paci2018 model was validated against (i) the same current blocking experiments used to validate the Paci2013 model, and (ii) recently published data about effects of different extracellular ionic concentrations. In conclusion, we present a new and more versatile in silico model, which will provide a platform for modeling the effects of drugs or mutations that affect Ca2+ handling in hiPSC-CMs
Genomförandeplan för rekommendationerna för utveckling av utbildningarna inom smÄbarnspedagogik
Utvecklingsforumet för utbildningarna inom smĂ„barnspedagogik, som var verksamt 2019â2020, utredde nulĂ€get för utbildningarna inom smĂ„barnspedagogik och utarbetade ett program för utveckling av utbildningarna. I början av 2021 tillsattes det en expertgrupp för att fortsĂ€tta arbetet med utvecklingsprogrammets rekommendationer för utveckling av utbildningarna. Gruppens uppgift var att utarbeta en genomförandeplan som grundar sig pĂ„ dessa rekommendationer.
Expertgruppen överlÀmnade sitt förslag till genomförandeplan till undervisnings- och kulturministeriet i april 2021. Genomförandeplanen presenteras i den hÀr publikationen. I planen redogörs det för sÀtt att genomföra utvecklingsrekommendationerna och anges ocksÄ en ansvarig aktör/ansvariga aktörer och en tidsplan för varje föreslagen ÄtgÀrd. Dessutom innehÄller planen förslag till mÄl, uppgifter, struktur, verksamhet och behövliga resurser för det nya Utvecklingsforumet för utbildningarna inom smÄbarnspedagogik som tillsÀtts 2021
Varhaiskasvatuksen koulutusten kehittÀmissuositusten toimeenpanosuunnitelma
Vuosina 2019â2020 toiminut Varhaiskasvatuksen koulutusten kehittĂ€misfoorumi selvitti varhaiskasvatuksen koulutusten nykytilaa ja laati varhaiskasvatuksen koulutusten kehittĂ€misohjelman. Kyseiseen kehittĂ€misohjelmaan sisĂ€ltyneiden koulutuksen kehittĂ€missuositusten jatkotyöstĂ€mistĂ€ varten perustettiin alkuvuodesta 2021 asiantuntijatyöryhmĂ€, jonka tehtĂ€vĂ€nĂ€ oli laatia nĂ€ihin suosituksiin pohjautuva toimeenpanosuunnitelma.
AsiantuntijaryhmÀ luovutti tÀssÀ julkaisussa esitellyn toimeenpanosuunnitelmaehdotuksensa opetus- ja kulttuuriministeriölle huhtikuussa 2021. Toimeenpanosuunnitelmassa eritellÀÀn kehittÀmissuositusten toteuttamisen tavat, esitetÀÀn kunkin toimenpide-ehdotuksen kohdalla sen toteuttamisen vastuutaho/vastuutahot ja tavoiteltava aikataulu. LisÀksi tehdÀÀn ehdotus myöhemmin vuonna 2021 asetettavan uuden Varhaiskasvatuksen koulutusten kehittÀmisfoorumin tavoitteista, tehtÀvistÀ, rakenteesta, toiminnasta ja tarvittavista resursseista
- âŠ