4 research outputs found

    Sequence and tectonostratigraphy of the Neoproterozoic (Tonian-Cryogenian) Amundsen Basin prior to supercontinent (Rodinia) breakup

    Get PDF
    Intracontinental basins that lack obvious compartmentalization and extensional faults may lie inboard of, and have the same timing as, rifted continental margins. Neoproterozoic successions of northwest Laurentia are an example where rift and intracontinental basins are spatially and temporally related. This study describes Tonian-Cryogenian pre-rift strata of the upper Shaler Supergroup, deposited in the Amundsen Basin (Victoria Island, Canada), in which five transgressive-regressive (T-R) cycles are identified. The pre-breakup succession in the Amundsen Basin has stratigraphic architecture that differs from adjacent, fault-bound rift basins. There is little evidence for extensive progradation, which resulted in broad, layer-cake stratigraphy where shallow-water facies predominate, deposited on a storm-dominated ramp. Correlation between the Amundsen and Fifteenmile (Yukon) basins is complicated by differing rates and regimes of subsidence, with the exception of a basin-deepening event that occurred in both basins and correlates with the global Bitter Springs isotope stage, initiating sometime after ~811 Ma. Contrary to previous correlations, we propose that the upper Shaler Supergroup and Little Dal Group of the Mackenzie Mountains Supergroup (Mackenzie Basin) are equivalent to the entire Fifteenmile Group. The identification of cycles and subsidence patterns in the Amundsen Basin prior to Rodinia break-up has implications for understanding the stratigraphic architecture of other intracontinental sag basins. We recognize three tectonostratigraphic units for the upper Shaler Supergroup that record an initial sag basin, followed by early extension and thermal doming, and finally rifting of the Amundsen Basin. Subsidence possibly was related to multiple cycles of intra-plate extension that complemented coeval fault-controlled subsidence. Analysis of pre-rift strata in the Amundsen Basin supports multi-phase, non-correlative break-up of Rodinia along the northwest margin of Laurentia

    Timing of Neoproterozoic glaciations linked to transport-limited global weathering

    Get PDF
    The Earth underwent several snowball glaciations between 1,000 and 542 million years ago. The termination of these glaciations is thought to have been triggered by the accumulation of volcanic CO2 in the atmosphere over millions of years1, 2. Subsequent high temperatures and loss of continental ice would increase silicate weathering and in turn draw down atmospheric CO2 (ref. 3). Estimates of the post-snowball weathering rate indicate that equilibrium between CO2 input and removal would be restored within several million years 4, potentially triggering a new glaciation. However the transition between deglaciation and the onset a new glaciation was on the order of 107 years. Over long timescales, the availability of fresh rock can become a limiting factor for silicate weathering rates5. Here we show that when this transport-determined limitation is incorporated into the COPSE biogeochemical model6, the stabilization time is substantially longer, >107 years. When we include a simple ice-albedo feedback, the model produces greenhouse–icehouse oscillations on this timescale that are compatible with observations. Our simulations also indicate positive carbon isotope excursions and an increased flux of oxygen to the atmosphere during interglacials, both of which are consistent with the geological record7, 8. We conclude that the long gaps between snowball glaciations can be explained by limitations on silicate weathering rates
    corecore