231 research outputs found

    Reserves and resources for CO2 storage in Europe: the CO2 StoP project

    Get PDF
    Th e challenge of climate change demands reduction in global CO 2 emissions. In order to fi ght global warming many coun- tries are looking at technological solutions to keep the release of CO 2 into the atmosphere under control. One of the most promising techniques is carbon dioxide capture and storage (CCS), also known as CO 2 geological storage. CCS can re- duce the world’s total CO 2 release by about one quarter by 2050 (IEA 2008, 2013; Metz et al. 2005). CCS usually in- volves a series of steps: (1) separation of the CO 2 from the gases produced by large power plants or other point sources, (2) compression of the CO 2 into supercritical fl uid, (3) trans- portation to a storage location and (4) injecting it into deep underground geological formations. CO 2 StoP is an acronym for the CO 2 Storage Potential in Europe project. Th e CO 2 StoP project which started in Janu- ary 2012 and ended in October 2014 included data from 27 countries (Fig. 1). Th e data necessary to assess potential loca- tions of CO 2 storage resources are found in a database set up in the project. A data analysis system was developed to analyse the com- plex data in the database, as well as a geographical informa- tion system (GIS) that can display the location of potential geological storage formations, individual units of assessment within the formations and any further subdivisions (daugh- ter units, such as hydrocarbon reservoirs or potential struc- tural traps in saline aquifers). Finally, formulae have been developed to calculate the storage resources. Th e database is housed at the Joint Research Centre, the European Commis- sion in Petten, the Netherlands. Background and methods CO 2 storage resource assessment A resource can be defi ned as anything potentially available and useful to man. Th e pore space in deeply buried reservoir rocks that can trap CO 2 is a resource that can be used for CO 2 storage. It is of utmost importance to be aware that the mere presence of a resource does not indicate that any part of it can be economically exploited, now or in the futur

    Reserves and resources for CO2 storage in Europe: the CO2StoP project

    Get PDF
    The challenge of climate change demands reduction in global CO2 emissions. In order to fight global warming many countries are looking at technological solutions to keep the release of CO2 into the atmosphere under control. One of the most promising techniques is carbon dioxide capture and storage (CCS), also known as CO2 geological storage. CCS can reduce the world’s total CO2 release by about one quarter by 2050 (IEA 2008, 2013; Metz et al. 2005). CCS usually involves a series of steps: (1) separation of the CO2 from the gases produced by large power plants or other point sources, (2) compression of the CO2 into supercritical fluid, (3) transportation to a storage location and (4) injecting it into deep underground geological formations. CO2StoP is an acronym for the CO2 Storage Potential in Europe project. The CO2StoP project which started in January 2012 and ended in October 2014 included data from 27 countries (Fig. 1). The data necessary to assess potential locations of CO2 storage resources are found in a database set up in the project. A data analysis system was developed to analyse the complex data in the database, as well as a geographical information system (GIS) that can display the location of potential geological storage formations, individual units of assessment within the formations and any further subdivisions (daughter units, such as hydrocarbon reservoirs or potential structural traps in saline aquifers). Finally, formulae have been developed to calculate the storage resources. The database is housed at the Joint Research Centre, the European Commission in Petten, the Netherlands.JRC.F.6-Energy Technology Policy Outloo

    Estimating Community Incidence of Salmonella, Campylobacter, and Shiga Toxin–producing Escherichia coli Infections, Australia

    Get PDF
    Estimated multipliers that linked surveillance of foodborne diseases with community incidence showed a high prevalence of these diseases

    Diagnostic performance of an acoustic-based system for coronary artery disease risk stratification

    Get PDF
    ObjectiveDiagnosing coronary artery disease (CAD) continues to require substantial healthcare resources. Acoustic analysis of transcutaneous heart sounds of cardiac movement and intracoronary turbulence due to obstructive coronary disease could potentially change this. The aim of this study was thus to test the diagnostic accuracy of a new portable acoustic device for detection of CAD.MethodsWe included 1675 patients consecutively with low to intermediate likelihood of CAD who had been referred for cardiac CT angiography. If significant obstruction was suspected in any coronary segment, patients were referred to invasive angiography and fractional flow reserve (FFR) assessment. Heart sound analysis was performed in all patients. A predefined acoustic CAD-score algorithm was evaluated; subsequently, we developed and validated an updated CAD-score algorithm that included both acoustic features and clinical risk factors. Low risk is indicated by a CAD-score value ≤20.ResultsHaemodynamically significant CAD assessed from FFR was present in 145 (10.0%) patients. In the entire cohort, the predefined CAD-score had a sensitivity of 63% and a specificity of 44%. In total, 50% had an updated CAD-score value ≤20. At this cut-off, sensitivity was 81% (95% CI 73% to 87%), specificity 53% (95% CI 50% to 56%), positive predictive value 16% (95% CI 13% to 18%) and negative predictive value 96% (95% CI 95% to 98%) for diagnosing haemodynamically significant CAD.ConclusionSound-based detection of CAD enables risk stratification superior to clinical risk scores. With a negative predictive value of 96%, this new acoustic rule-out system could potentially supplement clinical assessment to guide decisions on the need for further diagnostic investigation.Trial registration numberClinicalTrials.gov identifier NCT02264717; Results.</jats:sec

    Physiological, biochemical, anthropometric and biomechanical influences on exercise economy in humans

    Full text link
    Inter-individual variation in running and cycling exercise economy (EE) remains unexplained although studied for more than a century. This study is the first to comprehensively evaluate the importance of biochemical, structural, physiological, anthropometric, and biomechanical influences on running and cycling EE within a single study. In 22 healthy males (VO2 max range 45.5 to 72.1 ml.min(-1) .kg(-1) ) no factor related to skeletal muscle structure (% slow twitch fibre content, number of capillaries per fibre), mitochondrial properties (volume density, oxidative capacity, or mitochondrial efficiency) or protein content (UCP3 and MFN2 expression) explained variation in cycling and running EE among subjects. In contrast, biomechanical variables related to vertical displacement correlated well with running EE, but were not significant when taking body weight into account. Thus, running EE and body weight were correlated (R(2) = 0.94; P < 0.001), but was lower for cycling EE (R(2) = 0.23; P < 0.023). To separate biomechanical determinants of running EE we contrasted individual running and cycling EE considering that during cycle ergometer exercise the biomechanical influence on EE would be small because of the fixed movement pattern. Differences in cycling and running exercise protocols, e.g., related to biomechanics, play however only a secondary role in determining EE. There was no evidence for an impact of structural or functional skeletal muscle variables on EE. Body weight was the main determinant of EE explaining 94% of variance in running EE, although more than 50% of the variability of cycling EE remains unexplained

    Estimating seabed pressure from demersal trawls, seines, and dredges based on gear design and dimensions

    Get PDF
    This study assesses the seabed pressure of towed fishing gears and models the physical impact (area and depth of seabed penetration) from trip-based information of vessel size, gear type, and catch. Traditionally fishing pressures are calculated top-down by making use of large-scale statistics such as logbook data. Here, we take a different approach starting from the gear itself (design and dimensions) to estimate the physical interactions with the seabed at the level of the individual fishing operation. We defined 14 distinct towed gear groups in European waters (eight otter trawl groups, three beam trawl groups, two demersal seine groups, and one dredge group), for which we established gear “footprints”. The footprint of a gear is defined as the relative contribution from individual larger gear components, such as trawl doors, sweeps, and groundgear, to the total area and severity of the gear's impact. An industry-based survey covering 13 countries provided the basis for estimating the relative impact-area contributions from individual gear components, whereas sediment penetration was estimated based on a literature review. For each gear group, a vessel size–gear size relationship was estimated to enable the prediction of gear footprint area and sediment penetration from vessel size. Application of these relationships with average vessel sizes and towing speeds provided hourly swept-area estimates by métier. Scottish seining has the largest overall gear footprint of ∼1.6 km2 h−1 of which 0.08 km2 has an impact at the subsurface level (sediment penetration ≥ 2 cm). Beam trawling for flatfish ranks low when comparing overall footprint size/hour but ranks substantially higher when comparing only impact at the subsurface level (0.19 km2h−1). These results have substantial implications for the definition, estimation, and monitoring of fishing pressure indicators, which are discussed in the context of an ecosystem approach to fisheries managemen

    Major Challenges in clinical management of TB/HIV coinfected patients in Eastern Europe compared with Western Europe and Latin America

    Get PDF
    Objectives: rates of TB/HIV coinfection and multi-drug resistant (MDR)-TB are increasing in Eastern Europe (EE). We aimed to study clinical characteristics, factors associated with MDR-TB and predicted activity of empiric anti-TB treatment at time of TB diagnosis among TB/HIV coinfected patients in EE, Western Europe (WE) and Latin America (LA). Design and methods: between January 1, 2011, and December 31, 2013, 1413 TB/HIV patients (62 clinics in 19 countries in EE, WE, Southern Europe (SE), and LA) were enrolled. Results: significant differences were observed between EE (N = 844), WE (N = 152), SE (N = 164), and LA (N = 253) in the proportion of patients with a definite TB diagnosis (47%, 71%, 72% and 40%, p<0.0001), MDR-TB (40%, 5%, 3% and 15%, p<0.0001), and use of combination antiretroviral therapy (cART) (17%, 40%, 44% and 35%, p<0.0001). Injecting drug use (adjusted OR (aOR) = 2.03 (95% CI 1.00-4.09), prior anti-TB treatment (3.42 (1.88-6.22)), and living in EE (7.19 (3.28-15.78)) were associated with MDR-TB. Among 585 patients with drug susceptibility test (DST) results, the empiric (i.e. without knowledge of the DST results) anti-TB treatment included ≥3 active drugs in 66% of participants in EE compared with 90-96% in other regions (p<0.0001). Conclusions: in EE, TB/HIV patients were less likely to receive a definite TB diagnosis, more likely to house MDR-TB and commonly received empiric anti-TB treatment with reduced activity. Improved management of TB/HIV patients in EE requires better access to TB diagnostics including DSTs, empiric anti-TB therapy directed at both susceptible and MDR-TB, and more widespread use of cART
    corecore