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SUMMARY

Gene copy-number changes influence phenotypes
through gene-dosage alteration and subsequent
changes of protein complex stoichiometry. Human
trisomies where gene copy numbers are increased
uniformly over entire chromosomes provide generic
cases for studying these relationships. In most tri-
somies, gene and protein level alterations have fatal
consequences. We used genome-wide protein-pro-
tein interaction data to identify chromosome-specific
patterns of protein interactions. We found that some
chromosomes encode proteins that interact infre-
quently with each other, chromosome 21 in partic-
ular. We combined the protein interaction data with
transcriptome data from human brain tissue to
investigate how this pattern of global interactions
may affect cellular function. We identified highly con-
nected proteins that also had coordinated gene
expression. These proteins were associated with
important neurological functions affecting the char-
acteristic phenotypes for Down syndrome and have
previously been validated in mouse knockout exper-
iments. Our approach is general and applicable to
other gene-dosage changes, such as arm-level am-
plifications in cancer.

INTRODUCTION

Most proteins carry out their functions through physical interac-

tions with other molecular components (Barabasi and Oltvai,

2004). Technological developments anddata availability increas-

ingly allow interactome-wide studies of disease mechanisms. In

recent years, multiple studies have focused on the protein inter-

actome that underlies diseases and their co-occurrences (Lage

et al., 2007; Goh et al., 2007; Zhou et al., 2014; Wang et al.,

2012; Menche et al., 2015). It is now the general understanding

that many diseases are typically not caused by the activity of a

single defect component, but that the altered component can

affect a cascade of interacting components (Barabasi et al.,

2011). Thus, it is of importance to study the general topology of

the protein interactome to understand disease pathophysiology.

Gene expression alterations of individual members in protein

networks cause stoichiometric imbalance and disrupt function-

ality (Birchler and Veitia, 2010). Recent advances of mass spec-

trometry technology allow for studying the quantitative protein

interactome as a function of the underlying human proteome

(Bantscheff et al., 2012; Wisniewski et al., 2014; Hein et al.,

2015). A wide spectrum of interaction stoichiometries has been

shown to associate with different levels of protein network stabil-

ities. Stable network parts such as protein complexes have the

most balanced stoichiometries, while more transient interactions

tend to be associated with substoichiometric proportions (Hein

et al., 2015). These two kinds of interaction stoichiometries

play different roles in terms of global network topological proper-

ties and their impact on modularity and resilience (Hein et al.,

2015). In particular, removal of substoichiometric interactions

from the global network of protein interactions leads to rapid

network fragmentation, whereas removal of 50% of the stron-

gest edges causes hardly any network fragmentation (Hein

et al., 2015).

Numerical abnormalities of chromosomes have drastic effects

on gene dosages. In the case of additional human autosomes

many cannot be suppressed sufficiently by compensatory regula-

tion (Nagaoka et al., 2012). The phenotypic impact of genomic im-

balances is hard to estimate using metrics such as chromosome

length and gene count alone. For example, human X chromo-

some aneuploidies have high survival rates whereas chromo-

some 22 trisomies are very rarely observed in liveborns (Heinrich

et al., 2013). Thus, it is of particular interest to show how aberra-

tions of whole chromosomes or chromosome arms via gene-

dosage alterations affect protein complex stoichiometry.

Here we used an annotated, highly accurate resource of

experimentally derived protein-protein interaction (PPI) data

(Li et al., 2017) to analyze how pairs of human chromosomes

connect through protein interactions. We used the pairwise

PPIs to define highly connected proteins with at least five
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interacting proteins as hubs (d R 5). When used in combination

with chromosomal information, hubs represent a framework

for understanding how copy-number changes affect cellular

regulation and execute particular cellular functions, both at

the interaction and the global level. Since transcriptomics data

reflects changes in copy numbers they can be used to study

changes in protein abundance that potentially change the

stoichiometry.

RESULTS

Proteins Encoded by Chromosome 21 Interact
Infrequently with Each Other
We investigated the human interactome by using a protein inter-

action dataset, InWeb_IM (Li et al., 2017) containing verified and

benchmarked PPIs. We calculated the number of observed PPIs

between pairs of proteins encoded by the same chromosome

(termed cis-chromosomal interactions), as well as the number

of PPIs between proteins encoded by different chromosomes

(termed trans-chromosomal interactions). Since chromosome

size varies greatly with respect to numbers of genes (Figure S1A),

we normalized observed counts of cis- and trans-chromosomal

interactions by the number of theoretically possible interactions

(Figure S1B and STAR Methods).

When comparing chromosomes based on normalized counts

of cis- and trans-chromosomal interactions (Figure 1A), we

observed that a group of chromosomes (4, 13, 21, and X) had

fewer PPIs compared with all other chromosomes. These chro-

mosomes were characterized by few cis-chromosomal and few

trans-chromosomal interactions where chromosome 21 had the

lowest number of interactions overall (14 cis- and 5,207 trans-

chromosomal interactions). Notably, three out of the four chro-

mosomes with reduced numbers of interactions lead to liveborn

trisomies (13, 21, and X). It is well known that additional copies of

chromosomes 21 and X lead to morphological and phenotypic

changes, but are tolerated and generally compatible with life,

whereas liveborn trisomies of chromosome 13 and 18 only sur-

vive for about a week (Brewer et al., 2002). Chromosome Y has

the fewest protein-coding genes (N = 46) that mostly encode

products specific for male sex determination and male germ

cell production (Quintana-Murci and Fellous, 2001). Genes

located on chromosome Y primarily interact with each other,

reflecting their close functional relationship (Figure 1A). Aneu-

ploidies involving chromosome Y are compatible with long-

term survival as well.

To test the robustness of the results shown in Figure 1A, we

compared all human chromosomes based on cis- and trans-

chromosomal interactions. A connectivity ratio was defined as

the ratio of normalized cis-chromosomal interactions to normal-

ized trans-chromosomal interactions and calculated for each

chromosome using three different subsets of the InWeb_IM

interactome (Figure 1B and STAR Methods). The subsets were

selected based on different thresholds of PPI confidence scores.

The vastmajority of chromosomeshad roughly asmanycis-chro-

mosomal as trans-chromosomal interactions (mean = 1.02,

SD = 0.18 when excluding chromosome Y). Notably, chromo-

some 21 had the lowest connectivity ratio among all chromo-

somes (>3 SD below average), and had a significantly lower ratio

than expected (p = 0.012). In an independent randomization

analysis chromosome 21 was the only chromosome with signifi-

cantly lower connectivity ratio (p = 0.04). These observations

suggest that the structure of the interactome suppresses the

impact of the additional chromosome in trisomy 21, which is

characteristic for Down syndrome (DS),more than it does in other

trisomies. Consequently, long-term survival of patients with

trisomy 21 might be promoted by the extremely low ratio of

Y 21 13 4 X 12 22 2 17 20 5 18 14 3 9 15 1 10 11 7 19 16 8 6

6
8
16
19
7
11
10
1
15
9
3
14
18
5
20
17
2
22
12
X
4
13
21
Y

Color Key

Value

C
ou

nt

0 0.2 0.6 1

63

2.7

0.0

0.2

0.4

0.6

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 X Y

Chromosome

R
at

io
 o

f c
is

-t
o-

tr
an

s 
ch

ro
m

os
om

al
 p

ro
te

in
 in

te
ra

ct
io

nsA B

Figure 1. Patterns of Protein Interaction across Human Chromosomes

(A) Protein interactions between proteins encoded by different chromosomes. The heatmap visualizes pairwise similarities between all human chromosomes.

Chromosomes were clustered based on normalized counts of cis- and trans-chromosomal protein interactions. Colors represent relative frequencies of protein

interactions between pairs of chromosomes, ranging from light yellow (low) to dark red (high). Two main groups of chromosomes were identified using hierar-

chical clustering. Chromosome 21 was part of a small cluster of chromosomes with few cis- and trans-chromosomal interactions (together with chromosomes X,

4, and 13). Chromosome 21 had particularly few cis-chromosomal interactions compared with other chromosomes.

(B) Robustness analysis of chromosome-wise interactions using three protein interactome sets with different confidence score thresholds. The ratio of

normalized cis- to trans-chromosomal protein interactions (connectivity ratio) was calculated for each chromosome using the three different subsets of protein

interactions. Connectivity ratios for the three subsets are represented as horizontal bars for each chromosome.
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cis- to trans-chromosomal interactions. The low ratio could pre-

vent over-abundant proteins encoded by chromosome 21 from

forming interactionswith equally abundant proteins,whichwould

significantly disturb the balance of cellular protein complex

abundances.

We checked for possible confounding factors influencing the

connectivity ratio: (1) increased frequency of PPIs between

paralogs (Figure S2A); (2) a possible correlation between topo-

logical-associated domains and PPIs (Figure S2B); and (3) a

possible chromosomal bias in the calculation of the connectivity

ratio (Figures S2C and S2D). None of the three factors were

found to influence the chromosomal connectivity ratio.

Trisomy 21 Modulates Protein Activity in Adult Brain
Tissue
To understand how the transcriptional changes caused by tri-

somy 21 affect the protein network structure, we implemented

a network analysis method to identify functional hub proteins,

proteins connected by at least five interaction partners, in DS pa-

tients (Han et al., 2004). Since most proteins function in concert

with other proteins, we identified active hub proteins by including

gene expression information for both the hub and its interaction

partners. Expression correlation between the hub and its interac-

tion partners was used as a means to deem the hub being func-

tionally active. This method has previously been used to identify

therapeutically targetable proteins in breast cancer (Taylor et al.,

2009), and to prioritize disease genes across various tissues

(Bornigen et al., 2013). Using published expression data from

brain tissue of both adult DS patients and controls, we calculated

the average Pearson correlation coefficient (AvgPCC) in DS

patients and controls separately for each hub (STAR Methods).

Z scores were obtained by standardizing AvgPCC values, and

the hub proteins were ranked based on their absolute Z score

in DS patients and controls, respectively.

By combining ranked hub proteins in DS patients and controls

(Figure 2A), we identified three groups of hubs that were: (1) func-

tionally gained in DS patients, i.e., highly correlated in DS

patients but not in controls (267 hubs); (2) functionally lost in

A

B D E

C

Figure 2. Activity of Proteins in Down Syndrome

(A) Correlation of gene expression between a hub protein and its interactors. Points represent protein hubs according to the average correlation (AvgPCC)

calculated for DS patients (y axis) and controls (x axis). Correlated hubs (the 5%most correlated with an AvgPCC > 2 SD frommean) were considered active and

were divided into three groups: gained in DS patients (green), lost in DS (red), and constitutively active (blue). Hubs encoded by genes on chromosome 21 are

marked in orange. HubswithAvgPCC not significantly different (<2 SD) from themean in DS patients aswell as controls were considered not active in brain tissue.

(B) Chromosome-wise enrichment analysis of active hubs. The asterisks (*) mark the chromosomes significantly enriched in the groups: gained in DS (chro-

mosome 9 and 21) and lost in DS (chromosome 4 and 13).

(C) Hubs gained in DS identified in two or more gene expression datasets.

(D and E) HubsOLIG2 and c21orf91 and interacting proteins. Node colors represent logFC between DS patients and controls (green, higher expression in DS; red,

higher expression in controls). Larger nodes indicate whether there is a significant difference in logFC between DS patients and controls. Edge colors represent

the pairwise correlation between hub and interactor in DS patients (green, positive correlation; red, negative correlation; gray, no correlation).
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DS patients, i.e., highly correlated in controls, but not in DS pa-

tients (287 hubs); (3) constitutively active (N = 100), i.e., highly

correlated in both DS patients and controls. Hubs in these cate-

gories deviated significantly (>2 SD, equal to the 5%most corre-

lated) from the mean and were considered functionally active.

Hubs that differed by less than 2 SD from the mean in both DS

patients and controls were considered uncorrelated, and there-

fore functionally inactive in both states (Table 1). Each of the

groups mentioned above contained a small number of hubs en-

coded on chromosome 21 (Figure 2A). In contrast to single-gene

expression changes (Figure S3A), a relatively small number of

hubs encoded by chromosome 21 showed significant changes

in activity, indicating that they contribute to a gained or lost

function in DS. Further, when testing whether particular chromo-

somes were enriched for hubs either gained or lost in DS pa-

tients, we found that hubs gained in DS were enriched on

chromosome 21 (p = 0.03) and 9 (p = 0.04), whereas hubs

lost in DS were enriched on chromosome 4 (p = 0.003) and 13

(p = 0.007) (Figure 2B and Table S1).

Highly Correlated Hub Proteins Encoded on
Chromosome 21 Were Associated with Neural Diseases
and Development
Using the absolute Z scores for the expression correlation, we

ranked the hubs encoded by chromosome 21 (Table S1). In total,

11 of 78 hubs encoded by chromosome 21 were either gained

(N = 8) or lost (N = 3) in DS patients. We applied the same

approach to gene expression data from trisomic cell lines (Stin-

gele et al., 2012) as well as fetal brain tissue (Mao et al., 2005),

and observed that five correlated hub proteins encoded on chro-

mosome 21 were identified as gained in DS by at least two

studies (Figure 2C). The protein OLIG2 was identified in all three

datasets and has previously been shown to cause develop-

mental brain defects in DS and to contribute to the development

of leukemia among other cancers (Lin et al., 2005). Importantly,

high expression levels of OLIG2 limit the proliferation of neural

progenitors and therefore advance a reduction of neural cells

and brain size in DS patients (Lu et al., 2012). OLIG2 and its inter-

actors were predominantly positively correlated (Figure 2D) and

based on these observations it is reasonable to assume that the

stoichiometric correlations of OLIG2 contribute to neural defi-

ciencies in DS patients.

In addition to OLIG2, four other correlated hubs encoded by

chromosome 21 were gained in DS and identified by analysis

of two gene expression datasets: CBR3 is a carbonyl reductase

relevant to Alzheimer’s disease (Watanabe et al., 1998) and

associated with heart defects in DS (Liu et al., 2014), COL6A1

has been linked to congenital heart defects and ocular anomalies

in DS (Bromham et al., 2002; Davies et al., 1995), MRPL39 is

located in the trisomic region of a popular mouse model for

DS (Ramakrishna et al., 2009), and TTC3 is located in the so-

called DS critical region and is an inhibitor of neural development

(Berto et al., 2007). DYRK1A had equally many positive and

negative correlating interactions aswell asmany uncorrelated in-

teractions, and was therefore not in top 5% of the most corre-

lated hub proteins in our data (AvgPCC < 2 SD from mean)

(Figure S3B).

Notably, the most significantly correlated hub with gain-of-

function characteristics (i.e., stronger correlation in DS patients)

was c21orf91 (Figure 2E), an open reading frame only very

recently characterized to be an important new player in neural

development (Li et al., 2016). Previously it has been reported to

be highly expressed in the brain tissue of a patient with partial

tetrasomy of chromosome 21 (Rost et al., 2004) and has also

been implicated in eye development (Godbout et al., 2003).

Another recent paper (Olmos-Serrano et al., 2016) showed that

this open reading frame was upregulated in postmortem brains

from DS compared with controls and present in a co-expressed

module regulating action potential and axon ensheathment.

We performed enrichment analyses for disease association for

the chromosome 21 encoded hubs that were gained or lost in

DS. No disease association was found for the three hubs lost

in DS. However, for the hubs gained in DS, we found that

TTC3, CBR3, IFNAR1, GRIK1, and COL6A were enriched in DS

(adj. p = 1.28 3 10�8), OLIG2, TTC3, and COL6A were enriched

in nervous systems diseases (adj. p = 0.006), and OLIG2 and

GRIK1 were enriched in mental disorders (adj. p = 0.049). This

supports that the top-ranked genes gained in DS are implicated

in neurological mechanisms.

We compared the three transcriptomics datasets to mass-

spectrometric measurements of protein abundances. Ideally,

one would use quantitative proteomics measurements covering

the entire proteome to accurately analyze protein network stoi-

chiometries. Unfortunately, such data are yet not available for

the relevant tissues in this study. A recent analysis of responses

to aneuploidies in human cells (Stingele et al., 2012) generated

proteomics data covering around 6,000 proteins, of which

53 proteins are encoded by chromosome 21. Of the five highly

correlated hubs encoded by chromosome 21 and gained in

DS, protein abundance measurements were available for

COL6A1, CBR3, andMRPL39. All three proteins had log2 protein

expression ratios (trisomy 21 versus diploid cell lines) above

zero, indicating higher protein expression in trisomic cell lines

compared with cell lines with normal karyotypes, thus suggest-

ing important roles in DS patients.

Analysis of the proteomics data (Hein et al., 2015) did, how-

ever, not show differences between chromosome 21 and other

human chromosomes with respect to the distribution of stoichio-

metric and substoichiometric protein interactions. Based on the

limited coverage of chromosome 21 in the proteomics data, we

did not observe any pattern in protein interaction stoichiometry

Table 1. Correlation-Based Classification Criteria for Groups of

Proteins

Group

Direction of

Correlation

in DSa

Direction of

Correlation

in Controlsa No. Protein Activity

Gained in DS positive negative 267 active in DS,

inactive in

controls

Lost in DS negative positive 287 inactive in DS,

active in controls

Constitutively

active

positive positive 100 active in DS

and controls

Uncorrelated – – 6,727 ND
aDeviating > 2 SD from mean (the 5% most correlated hubs). ND, not

determined.
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that would explain the distinctive role of chromosome 21 other

than the observations described above, i.e., generally low num-

ber of PPIs as well as a low number of cis-chromosomal interac-

tions relative to trans-chromosomal interactions.

Functionally Altered Hub Proteins Affect DS Phenotypes
To further understand which phenotypes were affected most by

the correlated hub proteins gained or lost in DS, we used gene

knockout information from the Mouse Genome Informatics

(MGI) database. We tested all phenotypes from the first level of

the MGI ontology (29 phenotypes in total) for enrichment of the

correlated hubs encoded by chromosome 21 using a hypergeo-

metric test (Figure 3A). Two phenotypes were significantly en-

riched for proteins gained in DS: nervous system and vision/

eye. This is in agreementwith the fact that central nervous system

(CNS) changes are fundamental to phenotypic implications of

trisomy 21. DS patients are commonly affected by intellectual

disability and a variety of other neurological abnormalities. These

phenotypic alterations include, but are not limited to, changes

in number, structure, and function of neurological cells (Morice,

2010). Notably, disturbances in the gastrointestinal system

observed in DS patients are caused by disorders of the enteric

nervous system and could therefore be linked to changes in

the CNS, which we observed here. Esophageal motor dysfunc-

tion, chronic constipation, and Hirschsprung’s disease are all

observed in DS patients (Moore, 2008). The other enriched

phenotype, vision/eye, is also supported by the literature on DS

phenotypes, which describes significant vision deficits, including

reduced contrast sensitivity, acuity, and ability to discriminate

color (Krinsky-McHale et al., 2014). Moreover, children with DS

have significantly lower acuity thresholds as well significantly

reduced contrast sensitivity than controls (John et al., 2004). In

contrast to the nervous system and vision/eye phenotypes,

which were enriched for correlated hubs gained in DS, the

renal/urinary system was enriched for hubs lost in DS. Some pa-

tients with DS are indeed affected by a variety of renal and urinary

tract abnormalities including obstructive uropathy (Ariel et al.,

1991) and fetal pyelectasis, a dilation of the renal pelvis, which

have been observed in 25% of fetuses with DS (Benacerraf

et al., 1990). Figure 3B summarizes significant hubs gained or

lost in DS and their associated phenotypes.

DISCUSSION

Our results suggest that the human interactome has an intrinsic

structure and that different chromosomes participate differently

in it. By comparing PPIs on a chromosome-by-chromosome ba-

sis, we observed that proteins encoded by chromosome 21 have

few cis-chromosomal interactions, and that the ratio of cis- to

trans-chromosomal interactions was much lower for chromo-

some 21 than any other human chromosome. It appears that

chromosome 21 is tightly embedded into the overall structure

of the interactome, but fulfills a unique role of its own, which

potentially limits the regulatory and phenotypic impact of trisomy

21 compared with other autosomal trisomies, and might also

contribute to explaining the relatively high viability of patients

with DS.We used a previously publishedmethod to combine hu-

man interactome data and gene expression data from adult brain

tissue. This analysis identified highly correlated hub proteins

(proteins with at least five interactors in the interactome) gained,

lost, or constitutively active in DS compared with controls. Of

particular interest was OLIG2, a hub gained in DS, which was

validated in two additional gene expression datasets. OLIG2 is

known to play an important role in neurologic development and

was enriched in mental disorders and nervous system diseases.

Notably, this protein was not identified in the original study based

A B

Figure 3. Distribution of Phenotypes Among Active Proteins

(A) Phenotypes were ordered based on enrichment for hubs encoded by genes on chromosome 21 in all four types: gained in DS, lost in DS, constitutively active,

or uncorrelated. A hypergeometric test was performed to identify phenotypes significantly enriched for hubs encoded by genes on chromosome 21. The nervous

system and vision/eye were significantly enriched for hubs gained in DS, while the renal/urinary system was enriched for hubs lost in DS. Significantly enriched

categories are marked with an asterisk (*).

(B) Hubs that were gained or lost in DS and significantly associated phenotypes are highlighted in green (gained in DS) and red (lost in DS). Hubs encoded by

genes on chromosome 21 that were not associated with any MGI phenotype are not shown.
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on gene expression data alone (Lockstone et al., 2007). We

therefore suggest that this method of analyzing protein hub ac-

tivity is complementary to existing single-gene approaches,

andmay be applicable in other scenarios where gene expression

data can be combined with highly accurate protein interac-

tion data.

To computationally analyze the structure of the complete in-

teractome connecting chromosomes one would ideally account

for microRNA genes and other non-protein-coding genes as

well. However, it is currently not possible to accurately determine

detailed interaction patterns for these genes, and the analyses

presented here are therefore based only on the known protein-

based interactome. The number of interactions from public data-

bases in the confidence-scored interactome correlates highly

with the number of genes on each chromosome (Figure S1C).

While there are known biases in large high-throughput prote-

omics screens, such as weak coverage of low-abundance pro-

teins or proteins with very few or no tryptic peptides, these

biases are unlikely to be chromosome specific. Therefore, the

analyses presented here are based on a reasonably unbiased,

high-confidence sampling of the human protein interactome.

Gene copy numbers vary considerably among human individ-

uals (Handsaker et al., 2015), and this variation is highly relevant

in many diseases. This study suggests that our understanding of

phenotypic consequences of copy-number changes is limited by

analysis of single genes and their pathways (Kim et al., 2015). It is

equally important to account for protein abundance changes

that can affect protein network stoichiometry, which can sup-

press or amplify the impact of aneuploidies. Since most gene

products exert their function as part of multi-subunit protein

complexes, copy-number changes of protein-coding genes are

of particular interest. Balancing subunit abundances in protein

complexes (stoichiometry) is required for assembly of functional

complexes (Hein et al., 2015), and regulation of this balance

is used to in-/activate and modify functional complexes, for

example in the case of the cell cycle (Olsen et al., 2010). It was

shown recently that proteins compete for binding to hub proteins

at critical network branchpoints, and that differences in protein

abundances lead to differences in signaling phenotypes (Kiel

et al., 2013). Although we did not define hub proteins based on

known protein complexes but on pairwise PPIs obtained from

the interactome set used, we showed that combining these

with expression analysis still enables us to determine hub pro-

teins implicated in DS characteristics.

Aneuploidies such as trisomy 21 constitute a special case of

copy-number variation since they add a whole chromosome to

the karyotype. Model systems have been used extensively to

study cellular imbalances caused by additional copies of whole

chromosomes in yeast and in mice (Galdzicki et al., 2001).

Many human cancers are characterized by copy-number

changes including longer, arm-level amplifications as well as

shorter, highly focal amplifications (Beroukhim et al., 2010). Anal-

ysis of somatic mutations from whole-genome sequences sug-

gests that cancer genomes undergo stepwise transformation

during which additional, evolutionary advantageous events are

acquired successively (Landau et al., 2013). Gene-dosage

changes caused by amplification or deletion of important cancer

genes are one such event. Apart from cancer, several other

genomic diseases such as Alzheimer’s disease and schizo-

phrenia are characterized by copy-number alterations (Cook

and Scherer, 2008). More recently, large copy-number variants

were shown to compound each other and lead to a more severe

clinical presentation (Girirajan et al., 2012). One major challenge

is to identify the causative genes in large copy-number variants

in cancer as well as in neurocognitive disorders.

Our analyses evaluate the possibility of a built-in robustness

that is inherent to the structure of the human protein interactome.

This type of analysis is applicable in any study where gene-

dosage changes are relevant, such as arm-level aneuploidies

and even more focal copy-number changes, which are both

common in a wide range of cancers. Currently, strategies for

DS management and therapy are directed toward identification

of alterations at both chromosomal and molecular levels (de la

Torre et al., 2016; Delabar et al., 2016), highlighting the rele-

vance of approaches for identifying potential therapeutic targets

described in this study. A recent study presented a dosage

compensation strategy in DS pluripotent stem cells using XIST-

based silencing targeting the additional chromosome (Cook

and Scherer, 2008). This strategy was characterized as themajor

first step toward ‘‘chromosome therapy,’’ for which the present

paper also provides additional insight.
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STAR+METHODS

KEY RESOURCE TABLE

CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Søren

Brunak (soren.brunak@cpr.ku.dk).

METHOD DETAILS

Protein Interaction Data
The InWeb_IM interactome data is a network of human protein-protein interactions (PPIs) based on experimental interaction data

from humans and model organisms extracted from various protein interaction resources (Li et al., 2017). The network comprised

1,608,186 unique interactions covering 15,214 proteins encoded on chromosome 1-22, X and Y. In this analysis, the number of

possible PPIs was restricted to exclude self-interactions as well as histone proteins and ubiquitin C (Horton et al., 2004) since these

were two very highly connected proteins in the global network leaving 1,364,024 PPIs. We also removed tandem duplicated genes

registered in the Duplicated Genes Database, so only one member was included from each family. All interactions in InWeb_IM are

scored and benchmarked against a gold standard (Li et al., 2017) and PPIs with minimum confidence scores of 0.10 (N=251,401) are

considered highly reliable. To assess the robustness of the pairwise comparison across chromosomes we used two additional sub-

sets of InWeb_IM with scores R 0.05 (N=396,959) and R 0.15 (N=195,207).

Chromosome-Wise Connectivity Ratio
For each chromosome we calculated the connectivity ratio (CR), a measure that relates the number of cis-chromosomal interactions

between proteins encoded on the same chromosome to the number of trans-chromosomal interactions that occur between proteins

located on different chromosomes. CR is defined as:

CR=
ðnC=NCÞ
ðmC=MCÞ

where nC is the observed number of cis-chromosomal interactions on chromosome C normalized by the theoretically possible

number of cis-chromosomal interactions on chromosome C given by NC = fCgðfCg�1Þ
2 , {C} is the number of protein coding genes

on chromosome C. The normalized number of trans-chromosomal interactions is likewise the number of observed trans-chromo-

somal interactions, mC, normalized by the number of theoretically possible trans-chromosomal interactions, MC, given by

fCg � P
D;DsC

fDg, where {D} is the number of genes on any other chromosome than C. Self-interactions were excluded.

Global Similarity of Chromosomal PPI Profiles
For each pair of chromosomes in the human interactome, we counted the number of PPIs between pairs of genes located on both

chromosomes. The observed number of interactions between all pairs of chromosomes was then normalized by the theoretically

possible number of PPIs, which was defined as {CA}*{CB}, where {CA} and {CB} represent the number of genes on chromosomes

A and B. The resulting normalized counts were clustered using hierarchical clustering to compare connectivity ratios across the hu-

man chromosomes.

Reagent or Resource Source Identifier

Deposited Data

Inweb_IM Li et al., 2016 http://lagelab.org/resources

Gene expression data Lockstone et al., 2007 GSE5390

Gene expression data Mao et al., 2005 GSE1397

Microarray mRNA expression data Stingele et al., 2012 GSE39768

Software and Algorithms

R programming language http://r-project.org

Other

WebGestalt Wang et al., 2013

Zhang et al., 2005

http://webgestalt.org

The Mouse Genome Informatics (MGI) resource Shaw, 2009 http:/informatics.jax.org
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Highly Connected Hub Proteins
Based on the protein interaction data, we generated a list of all human proteins with minimum five first-order interaction partners

found in InWeb_IM, we abbreviate these as hubs. The cut off for interaction partners was set for reliable expression correlation es-

timations between the central protein and its interaction partners.

Gene Expression Data
Gene expression datawere obtained in previous studies fromhuman adult brain tissue (dorsolateral prefrontal cortex) based on seven

DS patients and eight healthy controls (Lockstone et al., 2007) and fetal brain tissue (cerebrum and cerebellum) based on seven tri-

somy 21 samples and seven aneuploidies (Mao et al., 2005). Both setswere analyzed using Affymetrix HumanGenomeU133A arrays.

Microarray mRNA data were obtained in a previous study from human retinal pigment epithelial (RPE-1) cell lines based on three tri-

somy 21 aneuploidies and three diploids (Stingele et al., 2012), this set was analyzed by Agilent Whole Human Genome Microarray.

Data analysis was performed for each set separately using the R programming language (version 3.2.1). We used RMA (Irizarry

et al., 2003) to normalize the raw expression signals for the gene expression data while background correction and normalization

of the mRNA was done using backgroundCorrect and normalizeBetweenArrays from the R package limma (Smyth, 2004). Log2-

fold-change values for all probes on the array was also done with limma (Smyth, 2004). Probes without detectable expression signals

were removed and probe-wise fold-change values were summarized for each gene by averaging over all probe-wise fold-changes

mapping to the gene.

Expression Correlation of Hub Proteins
Active hub proteins were identified based on correlated expression between the hub, H, and its interactors (Han et al., 2004), I, by

using Pearson’s correlation coefficient, PCC. The correlations were calculated across patients p=1, 2, 3,.., n, and done separately for

the DS patients and controls to differentiate between hubs exclusively correlated in DS patients, in controls, or in both. Correlation

coefficients for both groups were calculated as:

rI;H =

Pn
p= 1

�
XIp � XI

��
XHp � XH

�
ðn� 1ÞsIsH

where XI =

Pn

p=1
ðXIp Þ

n , XH =

Pn

p= 1
ðXHp Þ

n , SI =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
p= 1

ðXIp�XIÞ2
ðn�1Þ

r
and SH =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
p=1

ðXHp�XHÞ2
ðn�1Þ

r
. SISH is the product of the standard deviations

(SD) of the expression data for the hub and its interactors. To define a single measurement of correlation for each hub, the average

PCC (AvgPCC) over interactors, nH, was calculated as:

AvgPCC=

PnH
I= 1rI;H
nH

The AvgPCC was calculated for DS patients and controls, respectively. To rank the hubs based on their correlations, AvgPCCs

were normalized by transformation to z-scores:

z=
AvgPCC� mðAvgPCCÞ

sðAvgPCCÞ
We ranked the hubs based on their absolute z-scores, and hubs with jzj greater than 2 SD above mean (indicating they are the top

5% of most correlated hubs) in either DS patients, controls, or both groups were considered as active hub proteins. Three groups of

hubs were identified based on the above threshold: 1) hubs gained in DS i.e. only correlated/active in DS; 2) hubs lost in DS, i.e. only

correlated/active in controls; and 3) constitutively active hubs that were correlated/active in both (Table 1). All analyses were per-

formed using the R programming language (version 3.2.1).

QUANTIFICATION AND STATISTICAL ANALYSIS

Significance of the Chromosome-wise Connectivity Ratio (CR)
We assessed the significance of the CR in two ways. The first approach was to reassign proteins to new chromosomes randomly

while maintaining the original interactions, and in the second approach we used random network rewiring where we shuffled all in-

teractions while maintaining the degree for each node. Both approaches were done for 10,000 iterations and p values were recorded

for the true CR being higher or lower than expected based on the fraction of iterations with an artificial CR higher or lower than the true

value for the given chromosome. The randomization and subsequent significance calculation were both performed in the R program-

ming language (version 3.2.1).

Disease Enrichment in Chromosome 21 Encoded Hubs
The hubs in either gained or loss of function in DS encoded by genes on chromosome 21were investigated for enrichment in diseases

association. Each group was tested against all the hubs encoded by genes on chromosome 21 using the web-based version of

e2 Cell Systems 4, 357–364.e1–e3, March 22, 2017



WebGestalt (Wang et al., 2013; Zhang et al., 2005). A hypergeometric test was used as the statistical model, and p values for signif-

icance were adjusted using Benjamini-Hochberg correction.

Gene Enrichment
Enrichment of hubs encoded by genes at the different chromosomes,C, was calculated for each of the three groups, i, defined by the

AvgPCC, as:

Ei;C =
nHC

�
Ni

mHC

�
M

where nHi;C
is the number of hubs in group i that were encoded by a gene on chromosomeC. This is normalized by the sumof all genes

in group i, Ni. The enrichment was corrected with the background usingmHC
=M, wheremHC

is the number of hubs encoded by a gene

on chromosome C in the entire dataset and M is the total number of hubs in the set.

The significance of the enrichment was calculated in the same manner as the first approach for the CR significance. The chromo-

some names were shuffled and reassigning to all the hubs and their average PCC, and group assignment was re-done and enrich-

ment recalculated. This was done for 100,000 iterations and the p value for the true enrichment was calculated in the samemanner as

with the CR. The randomization and subsequent significance calculation were both performed in the R programming language

(version 3.2.1).

Functional Sub-Classification of Correlated Hub Proteins
The functionality of the hubs in the three different groups (gained/lost in DS patients and constitutive active) was characterized by

integrating information from the Mouse Genome Informatics (MGI) resource (Shaw, 2009). Uncorrelated hubs were used as a refer-

ence. Statistical analysis was performed using R programming language (version 3.2.1). Significance of phenotypic differences be-

tween groups was established based on a hypergeometric test.

ADDITIONAL RESOURCES

The protein interaction dataset, Inweb_IM, is available at (http://www.lagelab.org/resources/).
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