2,714 research outputs found

    F-region drift velocities from incoherent-scatter measurements at Millstone Hill

    Get PDF
    F-region drift velocities measured at Millstone Hill from 1968 to 1974 are presented in tabular form. A brief description of the measurement procedures is also given

    Calculation of conductivities and currents in the ionosphere

    Get PDF
    Formulas and procedures to calculate ionospheric conductivities are summarized. Ionospheric currents are calculated using a semidiurnal E-region neutral wind model and electric fields from measurements at Millstone Hill. The results agree well with ground based magnetogram records for magnetic quiet days

    Electric fields in the ionosphere

    Get PDF
    F-region drift velocities, measured by incoherent-scatter radar were analyzed in terms of diurnal, seasonal, magnetic activity, and solar cycle effects. A comprehensive electric field model was developed that includes the effects of the E and F-region dynamos, magnetospheric sources, and ionospheric conductivities, for both the local and conjugate regions. The E-region dynamo dominates during the day but at night the F-region and convection are more important. This model provides much better agreement with observations of the F-region drifts than previous models. Results indicate that larger magnitudes occur at night, and that daily variation is dominated by the diurnal mode. Seasonal variations in conductivities and thermospheric winds indicate a reversal in direction in the early morning during winter from south to northward. On magnetic perturbed days and the drifts deviate rather strongly from the quiet days average, especially around 13 L.T. for the northward and 18 L.T. for the westward component

    Equatorial ozone characteristics as measured at Natal (5.9 deg S, 35.2 deg W)

    Get PDF
    Ozone density profiles obtained through electrochemical concentration cell (ECC) sonde measurements at Natal were analyzed. Time variations, as expected, are small. Outstanding features of the data are tropospheric densities substantially higher than those measured at other stations, and also a total ozone content that is higher than the averages given by satellite measurements

    Vacancy localization in the square dimer model

    Get PDF
    We study the classical dimer model on a square lattice with a single vacancy by developing a graph-theoretic classification of the set of all configurations which extends the spanning tree formulation of close-packed dimers. With this formalism, we can address the question of the possible motion of the vacancy induced by dimer slidings. We find a probability 57/4-10Sqrt[2] for the vacancy to be strictly jammed in an infinite system. More generally, the size distribution of the domain accessible to the vacancy is characterized by a power law decay with exponent 9/8. On a finite system, the probability that a vacancy in the bulk can reach the boundary falls off as a power law of the system size with exponent 1/4. The resultant weak localization of vacancies still allows for unbounded diffusion, characterized by a diffusion exponent that we relate to that of diffusion on spanning trees. We also implement numerical simulations of the model with both free and periodic boundary conditions.Comment: 35 pages, 24 figures. Improved version with one added figure (figure 9), a shift s->s+1 in the definition of the tree size, and minor correction

    Network representations of non-equilibrium steady states: Cycle decompositions, symmetries and dominant paths

    Full text link
    Non-equilibrium steady states (NESS) of Markov processes give rise to non-trivial cyclic probability fluxes. Cycle decompositions of the steady state offer an effective description of such fluxes. Here, we present an iterative cycle decomposition exhibiting a natural dynamics on the space of cycles that satisfies detailed balance. Expectation values of observables can be expressed as cycle "averages", resembling the cycle representation of expectation values in dynamical systems. We illustrate our approach in terms of an analogy to a simple model of mass transit dynamics. Symmetries are reflected in our approach by a reduction of the minimal number of cycles needed in the decomposition. These features are demonstrated by discussing a variant of an asymmetric exclusion process (TASEP). Intriguingly, a continuous change of dominant flow paths in the network results in a change of the structure of cycles as well as in discontinuous jumps in cycle weights.Comment: 3 figures, 4 table

    Thermally activated reorientation of di-interstitial defects in silicon

    Full text link
    We propose a di-interstitial model for the P6 center commonly observed in ion implanted silicon. The di-interstitial structure and transition paths between different defect orientations can explain the thermally activated transition of the P6 center from low-temperature C1h to room-temperature D2d symmetry. The activation energy for the defect reorientation determined by ab initio calculations is 0.5 eV in agreement with the experiment. Our di-interstitial model establishes a link between point defects and extended defects, di-interstitials providing the nuclei for the growth.Comment: 12 pages, REVTeX, Four figures, submitted to Phys. Rev. Let

    Parametric, nonparametric and parametric modelling of a chaotic circuit time series

    Full text link
    The determination of a differential equation underlying a measured time series is a frequently arising task in nonlinear time series analysis. In the validation of a proposed model one often faces the dilemma that it is hard to decide whether possible discrepancies between the time series and model output are caused by an inappropriate model or by bad estimates of parameters in a correct type of model, or both. We propose a combination of parametric modelling based on Bock's multiple shooting algorithm and nonparametric modelling based on optimal transformations as a strategy to test proposed models and if rejected suggest and test new ones. We exemplify this strategy on an experimental time series from a chaotic circuit where we obtain an extremely accurate reconstruction of the observed attractor.Comment: 19 pages, 8 Fig

    Theory of impedance networks: The two-point impedance and LC resonances

    Get PDF
    We present a formulation of the determination of the impedance between any two nodes in an impedance network. An impedance network is described by its Laplacian matrix L which has generally complex matrix elements. We show that by solving the equation L u_a = lambda_a u_a^* with orthonormal vectors u_a, the effective impedance between nodes p and q of the network is Z = Sum_a [u_{a,p} - u_{a,q}]^2/lambda_a where the summation is over all lambda_a not identically equal to zero and u_{a,p} is the p-th component of u_a. For networks consisting of inductances (L) and capacitances (C), the formulation leads to the occurrence of resonances at frequencies associated with the vanishing of lambda_a. This curious result suggests the possibility of practical applications to resonant circuits. Our formulation is illustrated by explicit examples.Comment: 21 pages, 3 figures; v4: typesetting corrected; v5: Eq. (63) correcte

    Perturbed Three Vortex Dynamics

    Full text link
    It is well known that the dynamics of three point vortices moving in an ideal fluid in the plane can be expressed in Hamiltonian form, where the resulting equations of motion are completely integrable in the sense of Liouville and Arnold. The focus of this investigation is on the persistence of regular behavior (especially periodic motion) associated to completely integrable systems for certain (admissible) kinds of Hamiltonian perturbations of the three vortex system in a plane. After a brief survey of the dynamics of the integrable planar three vortex system, it is shown that the admissible class of perturbed systems is broad enough to include three vortices in a half-plane, three coaxial slender vortex rings in three-space, and `restricted' four vortex dynamics in a plane. Included are two basic categories of results for admissible perturbations: (i) general theorems for the persistence of invariant tori and periodic orbits using Kolmogorov-Arnold-Moser and Poincare-Birkhoff type arguments; and (ii) more specific and quantitative conclusions of a classical perturbation theory nature guaranteeing the existence of periodic orbits of the perturbed system close to cycles of the unperturbed system, which occur in abundance near centers. In addition, several numerical simulations are provided to illustrate the validity of the theorems as well as indicating their limitations as manifested by transitions to chaotic dynamics.Comment: 26 pages, 9 figures, submitted to the Journal of Mathematical Physic
    • …
    corecore