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Abstract
We present a formulation of the determination of the impedance between any
two nodes in an impedance network. An impedance network is described
by its Laplacian matrix L which has generally complex matrix elements.
We show that by solving the equation Luα = λαu∗

α with orthonormal
vectors ua , the effective impedance between nodes p and q of the network is
Zpq = ∑

α(uαp −uαq)
2/λα , where the summation is over all λα not identically

equal to zero and uαp is the pth component of uα . For networks consisting of
inductances L and capacitances C, the formulation leads to the occurrence of
resonances at frequencies associated with the vanishing of λα . This curious
result suggests the possibility of practical applications to resonant circuits. Our
formulation is illustrated by explicit examples.

PACS numbers: 01.55.+b, 02.10.Yn, 84.30.Bv

1. Introduction

A classic problem in electric circuit theory that has attracted attention from Kirchhoff’s time
[1] to the present is the consideration of network resistances and impedances. While the
evaluation of resistances and impedances can in principle be carried out for any given network
using traditional, but often tedious, analysis such as the Kirchhoff’s laws, there has been
no conceptually simple solution. Indeed, the problem of computing the effective resistance
between two arbitrary nodes in a resistor network has been studied by numerous authors (for
a list of relevant references on resistor networks up to 2000 see, e.g., [2]). Particularly, an
elementary exposition of the material can be found in Doyle and Snell [3].

However, past efforts prior to 2004 have been focused mainly on regular lattices and the
use of Green’s function technique, for which the analysis is most conveniently carried out
when the network size is infinite [2, 4]. Little attention has been paid to finite networks, even
though the latter are those occurring in applications. Furthermore, there has been very few
studies on impedance networks. To be sure, studies have been carried out on electrical and
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optical properties of random impedance networks in binary composite media (for a review
see [5]) and in dielectric resonances occurring in clusters embedded in a regular lattice [6].
But these are mostly approximate treatments on random media. More recently, Asad et al [7]
evaluated the two-point capacitance in an infinite network of identical capacitances. When
all impedances in a network are identical, however, Green’s function technique used and the
results are essentially the same as those of identical resistors.

In 2004 one of us proposed a new formulation of resistor networks which leads to an
expression of the effective resistance between any two nodes in a network in terms of the
eigenvalues and eigenvectors of the Laplacian matrix. Using this formulation one computes
the effective resistance between two arbitrary nodes in any network which can be either finite or
infinite [8]. This is a fundamentally new formulation. But the analysis presented in [8] makes
use of the fact that for resistors the Laplacian matrix has real matrix elements. Consequently,
the method does not extend to impedances whose Laplacian matrix elements are generally
complex (see, e.g., [9]). In this paper we resolve this difficulty and extend the formulation of
[8] to impedance networks.

Consider an impedance network L consisting of N nodes numbered α = 1, 2, . . . ,N .
Let the impedance connecting nodes α and β be

zαβ = zβα = rαβ + ixαβ, (1)

where rαβ = rβα � 0 is the resistive part and xαβ = xβα is the reactive part, which is positive
for inductances and negative for capacitances. Here, i = √−1 often denoted by j = √−1 in
alternating current (ac) circuit theory [9]. In this paper we shall use i and j interchangeably.
The admittance y connecting two nodes is the reciprocal of the impedance. For example,
yαβ = yβα = 1/zαβ .

Denote the electric potential at node α by Vα and the net current flowing into the network
(from the outside world) at node α by Iα . Both Vα and Iα are generally complex in the phasor
notation used in ac circuit theory [9]. Since there is neither source nor sink of currents, one
has the conservation rule

N∑
α=1

Iα = 0. (2)

The Kirchhoff equation for the network reads

L �V = �I , (3)

where

L =




y1 −y12 . . . −y1N
−y21 y2 . . . −y2N

...
...

. . .
...

−yN1 −yN2 . . . yN


 , (4)

with

yα ≡
N∑

β=1(β �=α)

yαβ, (5)

is the Laplacian matrix associated with the network L. In (3), �V and �I are N -vectors whose
components are respectively Vα and Iα .

Here, we need to solve (3) for �V for a given current configuration �I . The effective
impedance between nodes p and q, the quantity we wish to compute, is by definition the ratio

Zpq = Vp − Vq

I
, (6)
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where Vp and Vq are solved from (3) with

Iα = I (δαp − δαq). (7)

The crux of the matter is to solve the Kirchhoff equation (3) for �I given by (7). The difficulty
lies in the fact that, since the matrix L is singular, equation (3) cannot be formally inverted.

To circumvent this difficulty we proceed as in [8] to consider instead the equation

L(ε) �V (ε) = �I , (8)

where

L(ε) = L + εI, (9)

and I is the identity matrix. The matrix L(ε) now has an inverse and we can proceed by
applying the arsenal of linear algebra. We take the ε → 0 limit at the end and do not expect
any problem since we know there is a physical solution.

The crucial step is the computation of the inverse matrix L−1(ε). For this purpose it is
useful to first recall the approach for resistor networks.

In the case of resistor networks the matrix L(ε) is real symmetric and hence it has
orthonormal eigenvectors ψα(ε) with eigenvalues λα(ε) = λα + ε determined from the
eigenvalue equation

L(ε)ψα(ε) = λα(ε)ψα(ε), i = 1, 2, . . . ,N . (10)

Now a real Hermitian matrix L(ε) is diagonalized by the unitary transformation
U†(ε)L(ε)U(ε) = �(ε), where U(ε) is a unitary matrix whose columns are the orthonormal
eigenvectors ψα(ε) and �(ε) is a diagonal matrix with diagonal elements λα(ε) = λα +ε. The
inverse of this relation leads to L−1(ε) = U(ε)�−1(ε)U†(ε).3 In this way we find the effective
resistance between nodes p and q to be [8]

Rpq =
N∑

α=2

1

λα

|ψαp − ψαq |2, (11)

where the summation is over all nonzero eigenvalues, and ψαp is the pth component of ψα(0).
Here the α = 1 term in the summation with λ1(ε) = ε and ψ1p(ε) = 1/

√
N drops out (before

taking the ε → 0 limit) due to the conservation rule (2). It can be shown that there is no other
zero eigenvalue if the network is singly connected. Relation (11) is the main result of [8].

2. Impedance networks

For impedance networks the Laplacian matrix L is symmetric and generally complex and thus

L† = L∗ �= L,

where * denotes the complex conjugation and † denotes the hermitian conjugate. Therefore L
is not Hermitian and cannot be diagonalized as described in the preceding section.

However, the matrix L†L is always Hermitian and has non-negative eigenvalues. Write
the eigenvalue equation as

L†Lψα = σαψα, σα � 0, α = 1, 2, . . . ,N . (12)

One verifies that one eigenvalue is σ1 = 0 with ψ1 = {1, 1, . . . , 1}T /
√
N , where the

superscript T denotes the transpose. For complex L there can exist other zero eigenvalues
(see below).

3 The equivilent of the method we use in obtaining (11) is known in mathematics literature as the pseudo-inverse
method (see, e.g., [10, 11]).
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To facilitate considerations, we again introduce L(ε) as in (9) and rewrite (12) as

L†(ε)L(ε)ψα(ε) = σα(ε)ψα(ε), σα(ε) � 0, α = 1, 2, . . . ,N , (13)

where ε is small. Now one eigenvalue is σ1(ε) = ε2 with ψ1(ε) = {1, 1, . . . , 1}T /
√
N . For

other eigenvectors we make use of the theorem established in the following section (see also
[12]) that there exist N orthonormal vectors uα(ε) satisfying the equation

L(ε)uα(ε) = λα(ε)u∗
α(ε), a = 1, 2, . . . ,N , (14)

where

λα(ε) =
√

σα(ε) eiθα(ε), θα(ε) = real. (15)

Particularly, we can take

λ1(ε) =
√

σ1(ε) = ε, θ1(ε) = 0. (16)

Equation (14) plays the role of the eigenvalue equation (10) for resistors.
We next construct a unitary matrix U(ε) whose columns are uα(ε). Using (14) and the

fact that L(ε) is symmetric, one verifies that L(ε) is diagonalized by the transformation

UT (ε)L(ε)U(ε) = 
(ε),

where 
(ε) is a diagonal matrix with diagonal elements λα(ε). The inverse of this relation
leads to

L−1(ε) = U(ε)
−1(ε)UT (ε), (17)

where 
−1(ε) is a diagonal matrix with diagonal elements 1/λα(ε). We can now use (17) to
solve (8) to obtain, after using (6),

Zpq = lim
ε→0

N∑
α=1

1

λα(ε)
(uαp(ε) − uαq(ε))

2, (18)

where uαp is the pth component of the orthonormal vector uα(ε).
Now the term α = 1 in the summation drops out before taking the limit just like in the

case of resistors [8] since λ1(ε) = ε and u1p(ε) = u1q(ε) = constant. If there exist other
eigenvalues λα(ε) = ε with uαp(ε) �= constant, a situation which can occur when there are
pure reactances L and C, the corresponding terms in (18) diverge in the ε → 0 limit at specific
frequencies ω in an ac circuit. Then one obtains the effective impedance

Zpq =
N∑

α=2

1

λα

(uαp − uαq)
2, if λα �= 0, α � 2

= ∞, if there exists λα = 0, α � 2. (19)

Here uαp = uαp(0). The physical interpretation of Z = ∞ is the occurrence of a resonance in
an ac circuit at frequencies where λα = 0, meaning it requires essentially a zero input current
I to maintain potential differences at these frequencies.

Expression (19) is our main result for impedance networks.
In the case of pure resistors, the Laplacian L(ε) and the eigenvalues λα(ε) in (10) are real,

so without loss of generality we can take ψα(ε) to be real (see example 3 in section 5), and
use uα(ε) = ψα(ε) in (14) with θα(ε) = 0. Then uαp(ε) in (18) is real and (19) coincides with
(11) for resistors. There is no λα = 0 other than λ1 = 0, and there is no resonance.
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3. Complex symmetric matrix

For completeness in this section we give a proof of the theorem which asserts (14) and
determines uα for a complex symmetric matrix. Our proof parallels that in [12].

Theorem. Let L be an n × n symmetric matrix with generally complex elements. Write the
eigenvalue equation of L†L as

L†Lψα = σαψα, σα � 0, α = 1, 2, . . . , n. (20)

Then, there exist n orthonormal vectors uα satisfying the relation

Luα = λαu∗
α, α = 1, 2, . . . , n, (21)

where * denotes the complex conjugation and λα = √
σα eiθα , θα = real.

For nondegenerate σα we can take uα = ψα; for degenerate σα , the u’s are linear
combinations of the degenerate ψα . In either case the phase factor θα of λα is determined by
applying (21).

Remark

1. The λα’s are the eigenvalues of L if uα’s are real.
2. If {uα, λα} is a solution of (21), then {uα eiτ , λα e2iτ }, τ = real, is also a solution of (21).
3. While the procedure of constructing uα in the degenerate case appears to be involved, as

demonstrated in examples given in section 5 the orthonormal u’s can often be determined
quite directly in practice.

4. If L is real, then as aforementioned it has real eigenvalues and eigenvectors, and we can
take these real eigenvectors to be uα in (21) with λα real non-negative.

Proof. Since L†L is Hermitian its nondegenerate eigenvectors ψα can be chosen to be
orthonormal. For the eigenvector ψα with nondegenerate eigenvalue σα , construct a vector

φα = (Lψα)∗ + cαψα, (22)

where cα is any complex number. It is readily verified that we have

L†Lφα = σαφα, (23)

so φα is also an eigenvector of L†L with the same eigenvalue σα . It follows that if σα is
nondegenerate then φα and ψα must be proportional, namely,

Lψα = λαψ∗
α (24)

for some λα . The substitution of (24) into (23) with φα given by (22) now yields |λα|2 = σα

or λα = √
σα eiθα . Thus, for nondegenerate σα we simply choose uα = ψα and use (21) and

(20) to determine the phase factor θα . This establishes the theorem for nondegenerate λα .
For degenerate eigenvalues of L†L, say, σ1 = σ2 = σ with linearly independent

eigenvectors ψ1 and ψ2, we construct

v1 = (Lψ1)
∗ +

√
σ eiθ1ψ1 v2 = (Lψ2)

∗ +
√

σ eiθ2ψ2, (25)

where the choice of the real phase factors θ1, θ2 is at our disposal. We choose θ1, θ2 to make
v1 and v2 linearly independent to satisfy

ei(θ1−θ2) = (v2, v1)
∗/(v2, v1), (26)

where (y, z) = (yT )∗z is the inner product of vectors y and z.
Now one has

Lv1 = √
σ eiθ1v∗

1 , Lv2 = √
σ eiθ2v∗

2

L†Lv1 = σv1, L†Lv2 = σv2.
(27)
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Write

u1 = v1/|v1|, (28)

where |v| = √
(v, v) is the norm of v, and construct y = v2 − (v2, u1)u1 which is orthogonal

to u1. Next write

u2 = y/|y|. (29)
Then, it can be verified by using (26) that u1 and u2 are orthonormal and satisfy

Lu1 = √
σ eiθ1u∗

1

Lu2 = √
σ eiθ2u∗

2.
(30)

In addition, both u1 and u2 are eigenvectors of L†L with the same eigenvalue σ , hence are
orthogonal to ψα, α � 3. This establishes the theorem. �

In the case of multi-degeneracy, a similar analysis can be carried out by starting from a set
of vα to construct uα’s by using, say, the Gram–Schmidt orthonormalization procedure. For
details we refer to [13].

4. Resonances

If there exist eigenvalues λα = 0, α � 2, a situation which can occur at specific frequencies
ω in an ac circuit, then the effective impedance (19) between any two nodes diverges and the
network is in resonance.

In an ac circuit resonances occur when the impedances are pure reactances (capacitances or
inductances). The simplest example of a resonance is a circuit containing two nodes connecting
an inductance L and capacitance C in parallel. It is well known that this LC circuit is resonant
with an external ac source at the frequency ω = 1/

√
LC. This is most simply seen by noting

that the two nodes are connected by an admittance y12 = jωC + 1/jωL = j(ωC − 1/ωL), and
hence Z12 = 1/y12 diverges at ω = 1/

√
LC.

Alternately, using our formulation, the Laplacian matrix is

L = y12

(
1 −1

−1 1

)
, (31)

so that L∗L has eigenvalues σ1 = 0, σ2 = 4|y12|2 and we have λ1 = 0 as expected. In addition,
we also have λ2 = 0 when y12 = 0 at the frequency ω = 1/

√
LC. This is the occurrence of a

resonance.
An extension of this consideration to N reactances in a ring is discussed in example 2 in

the following section.

5. Examples

Example 1. A numerical example

Examples of applications of the formulation (19) are given in this section. It is instructive to
work out a numerical example as an illustration.

Consider three impedances z12 = i
√

3, z23 = −i
√

3, z31 = 1 connected in a ring as shown
in figure 1 where i = j = √−1. We have the Laplacian

L =


1 − i/

√
3 i/

√
3 −1

i/
√

3 0 −i/
√

3
−1 −i/

√
3 1 + i/

√
3


 . (32)
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1

2 3

z12 z31

z23

Figure 1. An example of three impedances in a ring.

Substituting L into (12) we find the following nondegenerate eigenvalues and orthonormal
eigenvectors of L†L,

σ1 = 0, ψ1 =

1

1
1


 ,

σ2 = 3 − 2
√

2, ψ2 = 1√
24 − 6

√
2


 2 − √

2 + i
√

3

−√
2 − 1 − i

√
3

2
√

2 − 1


 ,

σ3 = 3 + 2
√

2, ψ3 = 1√
24 + 6

√
2


 2 +

√
2 + i

√
3√

2 − 1 − i
√

3

−2
√

2 − 1


 .

(33)

Since the eigenvalues are nondegenerate, according to the theorem we take ui = ψi, i =
1, 2, 3. Using these expressions we obtain from (21)

√
σ2 =

√
2 − 1, eiθ2 = 1

7 [3
√

2 − 2 + i
√

3(2
√

2 + 1)]
√

σ3 =
√

2 + 1, eiθ3 = 1
7 [3

√
2 + 2 + i

√
3(2

√
2 − 1)].

(34)

Now (19) reads

Zpq = e−iθ2

√
σ2

(u2p − u2q)
2 +

e−iθ3

√
σ3

(u3p − u3q)
2, (35)

using which one obtains the impedances

Z12 = 3 + i
√

3, Z23 = 3 − i
√

3, Z31 = 0. (36)

These values agree with results of direct calculation using Ohm’s law.
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x1

x2

x3

xN

xN-1

Figure 2. A ring of N reactances.

Example 2. Resonance in a one-dimensional ring of N reactances

Consider N reactances jx1, jx2, . . . , jxN connected in a ring as shown in figure 2, where
x = ωL for inductance L and x = −1/ωC for capacitance C at ac frequency ω. The
Laplacian assumes the form

L = 1

j




y1 + yN −y1 0 · · · 0 0 −yN

−y1 y1 + y2 −y2 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · −yN−1 yN−1 + yN −yN

−yN 0 0 · · · 0 −y1 yN + y1


 (37)

where yi = 1/xi . The Laplacian L has one zero eigenvalue λ1 = 0 as aforementioned. The
product of the other N − 1 eigenvalues λα of L is known from graph theory [14, 15] to be
equal to N times its spanning tree generating function with edge weights y1, y2, . . . , yN . Now
the N spanning trees are easily written down and as a result we obtain

N∏
i=2

λα = N(−j)N−1

(
1

y1
+

1

y2
+ · · · +

1

yN

)
y1y2 · · · yN

= N(−j)N−1(x1 + x2 + · · · + xN)/x1x2 · · · xN . (38)

It follows that there exists another zero eigenvalue, and hence a resonance, if x1 + x2 + · · · +
xN = 0. This determines the resonance frequency ω.

Example 3. A one-dimensional ring of N equal impedances

In this example we consider N equal impedances z connected in a ring. We have

L = yTper
N , L† = y∗Tper

N , L†L = |y|2(Tper
N

)2
, (39)

where y = 1/z and

Tper
N =




2 −1 0 · · · 0 0 −1
−1 2 −1 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · −1 2 −1
−1 0 0 · · · 0 −1 2


 . (40)
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Thus L and L†L all have the same eigenvectors. The eigenvalues and orthonormal eigenvectors
of Tper

N are

µn = 2[1 − cos(2nπ/N)] = 4 cos2(nπ/N)

ψn = 1√
N




1
ωn

ω2n

...

ω(N−1)n


 , n = 0, 1, . . . , N − 1, (41)

where ω = ei2π/N . The eigenvalues of L†L are

σn = |y|2µ2
n. (42)

Since

σN−n = σn, (43)

the corresponding eigenvectors are degenerate and we need to construct vectors un1 and un2

for 0 < n < N/2. For N = even, however, the eigenvalue σN/2 is non-degenerate and needs
to be considered separately.

For 0 < n < N/2 the degenerate eigenvectors

ψn and ψN−n = ψ∗
n (44)

are not orthonormal. Then we construct linear combinations

un1 = ψn + ψ∗
n√

2
=

√
2

N




1
cos 2nπ

N

cos 4nπ
N

...

cos 2(N−1)nπ

N




,

un2 = ψn − ψ∗
n√

2i
=

√
2

N




0
sin 2nπ

N

sin 4nπ
N

...

sin 2(N−1)nπ

N




, n = 1, 2, . . . ,

[
N − 1

2

]
,

(45)

which are orthonormal, where [x] is the integral part of x. The u’s are eigenvectors of L†L
with the same eigenvalue σn = |y|2µ2

n. For N = even we have an additional non-degenerate
eigenvector

uN/2 = 1√
N




1
−1
1

−1
...

−1




. (46)
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L

C

L

L

C C C C

Figure 3. A 6 × 4 network of capacitances C and inductances L.

We next use (21) to determine the phase factors θn1 and θn2. Comparing the eigenvalue
equation

Lun1 = (yµn)un1 with Lun1 = (|y|µn) eiθn1u∗
n1,

Lun2 = (yµn)un2 with Lun2 = (|y|µn) eiθn2u∗
n2, and

LuN/2 = 4(y)uN/2 with LuN/2 = 4|y| eiθN/2u∗
N/2,

(47)

we obtain

θn1 = θn2 = θN/2 = θ, (48)

where θ is given by y = |y| eiθ .
We now use (19) to compute the impedance between nodes p and q to obtain

Zpq = 2

Ny

[ N−1
2 ]∑

n=1

1

µn

[(
cos

2npπ

N
− cos

2nqπ

N

)2

− i2
(

sin
2npπ

N
− sin

2nqπ

N

)2
]

+ E,

(49)

where [x] denotes the integral part of x and

E = 1

2Ny

[
(−1)p − (−1)q

]2

, N = even

= 0, N = odd.

(50)

After some manipulation it is reduced to

Zpq = z

N

N−1∑
n=1

|ei2npπ/N − ei2nqπ/N |2
2[1 − cos(2nπ/N)]

. (51)

This expression has been evaluated in [8] with the result

Zpq = z|p − q|
[

1 − |p − q|
N

]
, (52)

which is the expected impedance of two impedances |p − q|z and (N − |p − q|)z connected
in parallel as in a ring. This completes the evaluation of Zpq .

Example 4. Networks of inductances and capacitances

As an example of networks of inductances and capacitances, we consider an M × N array
of nodes forming a rectangular net with free boundaries as shown in figure 3. The nodes are
connected by capacitances C in the M directions and inductances L in the N direction.
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The Laplacian of the network is

L = (jωC) Tfree
M ⊗ IN −

(
j

ωL

)
IM ⊗ Tfree

N , (53)

where Tfree
M is the M × M matrix

Tfree
M =




1 −1 0 · · · 0 0 0
−1 2 −1 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · −1 2 −1
0 0 0 · · · 0 −1 1


 , (54)

and IN is the N × N identity matrix. This gives

L∗L = (ωC)2Ufree
M ⊗ IN − 2

(
C

L

)
Tfree

M ⊗ Tfree
N +

(
1

ωL

)2

IM ⊗ Ufree
N , (55)

where Ufree
M is the M × M matrix

Ufree
M =




2 −3 1 0 0 · · · 0 0 0
−3 6 −4 1 0 · · · 0 0 0
1 −4 6 −4 1 · · · 0 0 0
0 1 −4 6 −4 · · · 0 0 0
0 0 1 −4 6 · · · 0 0 0
...

...
...

...
...

. . .
...

...
...

0 0 0 0 0 · · · −4 6 −3
0 0 0 0 0 · · · 1 −3 2




. (56)

Now Tfree
M has eigenvalues

λm = 2(1 − cos θm) = 4 sin2(θm/2), θm = mπ

M
(57)

and eigenvector ψ(M)
m whose components are

ψ(M)
mx =




1√
M

, m = 0, for all x,√
2
M

cos
(
x + 1

2

)
θm, m = 1, 2, . . . ,M − 1, for all x.

(58)

It follows that L∗L has eigenvectors

ψ free
(m,n);(x,y) = ψ(M)

mx ψ(N)
ny (59)

and eigenvalues

σmn = 16
(
ωC sin2 θm

2
− 1

ωL
sin2 φn

2

)2
, (60)

where θm = mπ/M,φn = nπ/N . This gives

λmn = 4j
[
ωC sin2(θm/2) − 1

ωL
sin2(φn/2)

]
= √

σmn eiθmn , θmn = ±π/2.
(61)

Since the vectors ψ free
(m,n);(x,y) are orthonormal and non-degenerate, according to the theorem

we can use these vectors in (19) to obtain the impedance between nodes (x1, y1) and (x2, y2).
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This gives

Zfree
(x1,y1);(x2,y2)

=
M−1∑
m=0

N−1∑
n=0 (m,n) �=(0,0)

(
ψ free

(m,n);(x1,y1)
− ψ free

(m,n);(x2,y2)

)2

λmn

= −j

NωC
|x1 − x2| +

jωL

M
|y1 − y2| +

2j

MN

×
M−1∑
m=1

N−1∑
n=1

[
cos

(
x1 + 1

2

)
θm cos

(
y1 + 1

2

)
φn − cos

(
x2 + 1

2

)
θm cos

(
y2 + 1

2

)
φn

]2

−ωC(1 − cos θm) + 1
ωL

(1 − cos φn)
.

(62)

As discussed in section 4, resonances occur at ac frequencies determined from λmn = 0.
Thus, there are (M − 1)(N − 1) distinct resonance frequencies given by

ωmn =
∣∣∣∣∣ sin(nπ/2N)

sin(mπ/2M)

∣∣∣∣∣ 1√
LC

, m = 1, . . . , M − 1; n = 1, . . . , N − 1. (63)

A similar result can be found for an M × N net with toroidal boundary conditions. However,
due to the degeneracy of eigenvalues, in that case there are [(M + 1)/2][(N + 1)/2] distinct
resonance frequencies, where [x] is the integral part of x. It is of pertinent interest to note that
a network can become resonant at a spectrum of distinct frequencies, and these resonances
occur in the effective impedances between any two nodes.

In the limit of M,N → ∞, (63) becomes continuous indicating that the network is
resonant at all frequencies. This is verified by replacing the summations by integrals in (62)
to yield the effective impedance between two nodes (x1, y1) and (x2, y2),

Z∞
(x1,y1);(x2,y2)

= j

4π2

∫ 2π

0
dθ

∫ 2π

0
dφ

[
1 − cos[(x1 − x2)θ ] cos[(y1 − y2)φ]

−ωC(1 − cos θ) + 1
ωL

(1 − cos φ)

]
, (64)

which diverges logarithmically4.

6. Summary

We have presented a formulation of impedance networks which permits the evaluation of the
effective impedance between arbitrary two nodes. The resulting expression is (19) where uα

and λa are those given in (14). In the case of reactance networks, our analysis indicates that
resonances occur at ac frequencies ω determined by the vanishing of λa . This curious result
suggests the possibility of practical applications of our formulation to resonant circuits.
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