367 research outputs found

    Carbon in Red Giants in Globular Clusters and Dwarf Spheroidal Galaxies

    Get PDF
    We present carbon abundances of red giants in Milky Way globular clusters and dwarf spheroidal galaxies (dSphs). Our sample includes measurements of carbon abundances for 154 giants in the clusters NGC 2419, M68, and M15 and 398 giants in the dSphs Sculptor, Fornax, Ursa Minor, and Draco. This sample doubles the number of dSph stars with measurements of [C/Fe]. The [C/Fe] ratio in the clusters decreases with increasing luminosity above log(L/L_sun) ~= 1.6, which can be explained by deep mixing in evolved giants. The same decrease is observed in dSphs, but the initial [C/Fe] of the dSph giants is not uniform. Stars in dSphs at lower metallicities have larger [C/Fe] ratios. We hypothesize that [C/Fe] (corrected to the initial carbon abundance) declines with increasing [Fe/H] due to the metallicity dependence of the carbon yield of asymptotic giant branch stars and due to the increasing importance of Type Ia supernovae at higher metallicities. We also identified 11 very carbon-rich giants (8 previously known) in three dSphs. However, our selection biases preclude a detailed comparison to the carbon-enhanced fraction of the Milky Way stellar halo. Nonetheless, the stars with [C/Fe] < +1 in dSphs follow a different [C/Fe] track with [Fe/H] than the halo stars. Specifically, [C/Fe] in dSphs begins to decline at lower [Fe/H] than in the halo. The difference in the metallicity of the [C/Fe] "knee" adds to the evidence from [alpha/Fe] distributions that the progenitors of the halo had a shorter timescale for chemical enrichment than the surviving dSphs.Comment: accepted to ApJ; 20 pages, 11 figures, 2 machine-readable table

    Ecosystem service multifunctionality and trade-offs in English Green Belt peri-urban planning

    Get PDF
    Green Belt policies govern peri-urban landscapes globally by restricting built development. Yet, they often have little consideration for the land within them. This is especially the case in England where ecosystem services are poorly accounted for in Green Belt policy, whilst also being viewed as a development obstacle, with few environmental and social benefits; a situation mirrored in peri-urban landscapes globally. Moreover, there is a significant research gap into Green Belts through the socio-ecological lenses of ecosystem services and multifunctionality, which allows populist discourses to go unchallenged. Using modelling and participatory mapping data this paper addresses this gap by quantifying the ecosystem service supply, trade-offs and multifunctionality of the North-East Green Belt, and the wider planning and policy implications. The results show that contrary to claims, Green Belts in England can and do provide multiple benefits to people when studied through these lenses. However, levels of individual ecosystem services and overall multifunctionality differ spatially within Green Belts resulting in opportunity areas as well as potential losses of ecosystem services from development. Areas of deciduous and coniferous woodland as well as key “green wedges” close to urban populations were found to be multifunctionality “hots-spots”, whereas arable and improved grassland provide notable “cold-spots”. Trade-offs were mostly from provisioning services. We argue that Green Belt policies explicitly and holistically accounting for ecosystem services could catalyse a multifunctional opportunity space for climate, nature and people in peri-urban landscapes. Additionally, our study demonstrates the conceptual merits of ecosystem service multifunctionality for planning.This work was supported by the Natural Environment Research Council funded ONE Planet Doctoral Training Partnership [NE/ S007512/1]

    Transcending Scale Dependence in Identifying Habitat with Resource Selection Functions

    Get PDF
    Multi-scale resource selection modeling is used to identify factors that limit species distributions across scales of space and time. This multi-scale nature of habitat suitability complicates the translation of inferences to single, spatial depictions of habitat required for conservation of species. We estimated resource selection functions (RSFs) across three scales for a threatened ungulate, woodland caribou (Rangifer tarandus caribou), with two objectives: (1) to infer the relative effects of two forms of anthropogenic disturbance (forestry and linear features) on woodland caribou distributions at multiple scales and (2) to estimate scale-integrated resource selection functions (SRSFs) that synthesize results across scales for management-oriented habitat suitability mapping. We found a previously undocumented scale-specific switch in woodland caribou response to two forms of anthropogenic disturbance. Caribou avoided forestry cut-blocks at broad scales according to first-and second-order RSFs and avoided linear features at fine scales according to third-order RSFs, corroborating predictions developed according to predator-mediated effects of each disturbance type. Additionally, a single SRSF validated as well as each of three single-scale RSFs when estimating habitat suitability across three different spatial scales of prediction. We demonstrate that a single SRSF can be applied to predict relative habitat suitability at both local and landscape scales in support of critical habitat identification and species recovery

    The Binary Fraction of Stars in Dwarf Galaxies: The Cases of Draco and Ursa Minor

    Get PDF
    Measuring the frequency of binary stars in dwarf spheroidal galaxies (dSphs) requires data taken over long time intervals. We combine radial velocity measurements from five literature sources taken over the course of ~30 years to yield the largest multi-epoch kinematic sample for stars in the dSphs Draco and Ursa Minor. With this data set, we are able to implement an improved version of the Bayesian technique described in Spencer et al. to evaluate the binary fraction of red giant stars in these dwarf galaxies. Assuming Duquennoy & Mayor period and mass ratio distributions, the binary fractions in Draco and Ursa Minor are 0.50_(-0.06)^(+0.04) and 0.78_(-0.08)^(+0.09), respectively. We find that a normal mass ratio distribution is preferred over a flat distribution, and that log-normal period distributions centered on long periods ”_(log P > 3.5) are preferred over distributions centered on short ones. We reanalyzed the binary fractions in Leo II, Carina, Fornax, Sculptor, and Sextans, and find that there is <1% chance that binary fraction is a constant quantity across all seven dwarfs, unless the period distribution varies greatly. This indicates that the binary populations in Milky Way dSphs are not identical in regard to their binary fractions, period distributions, or both. We consider many different properties of the dwarfs (e.g., mass, radius, luminosity, etc.) and find that binary fraction might be larger in dwarfs that formed their stars quickly and/or have high velocity dispersions

    Stellar kinematics of dwarf galaxies from multi-epoch spectroscopy: application to Triangulum II

    Get PDF
    We present new MMT/Hectochelle spectroscopic measurements for 257 stars observed along the line of sight to the ultra-faint dwarf galaxy Triangulum II. Combining with results from previous Keck/DEIMOS spectroscopy, we obtain a sample that includes 16 likely members of Triangulum II, with up to 10 independent redshift measurements per star. To this multi-epoch kinematic data set we apply methodology that we develop in order to infer binary orbital parameters from sparsely sampled radial velocity curves with as few as two epochs. For a previously-identified (spatially unresolved) binary system in Tri~II, we infer an orbital solution with period 296.0−3.3+3.8 days296.0_{-3.3}^{+3.8} \rm~ days , semi-major axis 1.12−0.24+0.41 AU1.12^{+0.41}_{-0.24}\rm~AU, and a systemic velocity −380.0±1.7 km s−1 -380.0 \pm 1.7 \rm~km ~s^{-1} that we then use in the analysis of Tri~II's internal kinematics. Despite this improvement in the modeling of binary star systems, the current data remain insufficient to resolve the velocity dispersion of Triangulum II. We instead find a 95% confidence upper limit of σvâ‰Č3.4 km s−1\sigma_{v} \lesssim 3.4 \rm ~km~s^{-1}

    Tools for delivering entomopathogenic fungi to malaria mosquitoes: effects of delivery surfaces on fungal efficacy and persistence.

    Get PDF
    BACKGROUND\ud \ud Entomopathogenic fungi infection on malaria vectors increases daily mortality rates and thus represents a control measure that could be used in integrated programmes alongside insecticide-treated bed nets (ITNs) and indoor residual spraying (IRS). Before entomopathogenic fungi can be integrated into control programmes, an effective delivery system must be developed.\ud \ud METHODS\ud \ud The efficacy of Metarhizium anisopliae ICIPE-30 and Beauveria bassiana I93-825 (IMI 391510) (2 × 10(10) conidia m(-2)) applied on mud panels (simulating walls of traditional Tanzanian houses), black cotton cloth and polyester netting was evaluated against adult Anopheles gambiae sensu stricto. Mosquitoes were exposed to the treated surfaces 2, 14 and 28 d after conidia were applied. Survival of mosquitoes was monitored daily.\ud \ud RESULTS\ud \ud All fungal treatments caused a significantly increased mortality in the exposed mosquitoes, descending with time since fungal application. Mosquitoes exposed to M. anisopliae conidia on mud panels had a greater daily risk of dying compared to those exposed to conidia on either netting or cotton cloth (p < 0.001). Mosquitoes exposed to B. bassiana conidia on mud panels or cotton cloth had similar daily risk of death (p = 0.14), and a higher risk than those exposed to treated polyester netting (p < 0.001). Residual activity of fungi declined over time; however, conidia remained pathogenic at 28 d post application, and were able to infect and kill 73 - 82% of mosquitoes within 14 d.\ud \ud CONCLUSION\ud \ud Both fungal isolates reduced mosquito survival on immediate exposure and up to 28 d after application. Conidia were more effective when applied on mud panels and cotton cloth compared with polyester netting. Cotton cloth and mud, therefore, represent potential substrates for delivering fungi to mosquitoes in the field

    Stellar Velocities in the Carina, Fornax, Sculptor and Sextans dSph Galaxies: Data from the Magellan/MMFS Survey

    Full text link
    We present spectroscopic data for individual stars observed from 2004 March through 2008 August as part of our Michigan/MIKE Fiber System (MMFS) survey of four dwarf spheroidal (dSph) galaxies: Carina, Fornax, Sculptor and Sextans. Using MMFS at the Magellan/Clay Telescope at Las Campanas Observatory, we have acquired 8855 spectra from 7103 red giant candidates in these Galactic satellites. We list measurements of each star's line-of-sight velocity (median error +/- 2.1 km/s) and spectral line indices for iron and magnesium absorption features. We use globular cluster spectra to calibrate the indices onto standard [Fe/H] metallicity scales, but comparison of the resulting metallicities with published values suggests that the MMFS indices are best used as indicators of relative, not absolute metallicity. The empirical distributions of velocity and spectral indices also allow us to quantify the amount of contamination by foreground stars. In a companion paper we develop an algorithm that evaluates the membership probability for each star, showing that the present MMFS sample contains more than 5000 dSph members, including 774 Carina members, 2483 Fornax members, 1365 Sculptor members, and 441 Sextans members.Comment: Accepted for publication in The Astronomical Journal. Full data tables will be included in the electronic article, and are available at http://www.ast.cam.ac.uk/~walker/mmfsdata.htm

    Evolution of opinions on social networks in the presence of competing committed groups

    Get PDF
    Public opinion is often affected by the presence of committed groups of individuals dedicated to competing points of view. Using a model of pairwise social influence, we study how the presence of such groups within social networks affects the outcome and the speed of evolution of the overall opinion on the network. Earlier work indicated that a single committed group within a dense social network can cause the entire network to quickly adopt the group's opinion (in times scaling logarithmically with the network size), so long as the committed group constitutes more than about 10% of the population (with the findings being qualitatively similar for sparse networks as well). Here we study the more general case of opinion evolution when two groups committed to distinct, competing opinions AA and BB, and constituting fractions pAp_A and pBp_B of the total population respectively, are present in the network. We show for stylized social networks (including Erd\H{o}s-R\'enyi random graphs and Barab\'asi-Albert scale-free networks) that the phase diagram of this system in parameter space (pA,pB)(p_A,p_B) consists of two regions, one where two stable steady-states coexist, and the remaining where only a single stable steady-state exists. These two regions are separated by two fold-bifurcation (spinodal) lines which meet tangentially and terminate at a cusp (critical point). We provide further insights to the phase diagram and to the nature of the underlying phase transitions by investigating the model on infinite (mean-field limit), finite complete graphs and finite sparse networks. For the latter case, we also derive the scaling exponent associated with the exponential growth of switching times as a function of the distance from the critical point.Comment: 23 pages: 15 pages + 7 figures (main text), 8 pages + 1 figure + 1 table (supplementary info
    • 

    corecore