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Abstract. Multi-scale resource selection modeling is used to identify factors that limit
species distributions across scales of space and time. This multi-scale nature of habitat
suitability complicates the translation of inferences to single, spatial depictions of habitat
required for conservation of species. We estimated resource selection functions (RSFs) across
three scales for a threatened ungulate, woodland caribou (Rangifer tarandus caribou), with two
objectives: (1) to infer the relative effects of two forms of anthropogenic disturbance (forestry
and linear features) on woodland caribou distributions at multiple scales and (2) to estimate
scale-integrated resource selection functions (SRSFs) that synthesize results across scales for
management-oriented habitat suitability mapping. We found a previously undocumented
scale-specific switch in woodland caribou response to two forms of anthropogenic disturbance.
Caribou avoided forestry cut-blocks at broad scales according to first- and second-order RSFs
and avoided linear features at fine scales according to third-order RSFs, corroborating
predictions developed according to predator-mediated effects of each disturbance type.
Additionally, a single SRSF validated as well as each of three single-scale RSFs when
estimating habitat suitability across three different spatial scales of prediction. We
demonstrate that a single SRSF can be applied to predict relative habitat suitability at both
local and landscape scales in support of critical habitat identification and species recovery.

Key words: critical habitat; scale-integrated resource selection function, SRSF; species distribution
model; woodland caribou.

INTRODUCTION

Ecological patterns result from processes occurring at

multiple spatial and temporal scales, yet research is

typically scale specific (Wiens 1989). Different scales of

inference may not carry equal weight in driving patterns

most relevant to decision-makers (Levin 1992). Thus,

applied ecologists require the elusive ability to focus on

‘‘the scales that matter’’ (Hobbs 2003:233) and ideally to

integrate knowledge across scales (Turner et al. 1989).

Species-habitat modeling is commonly directed toward

applied ecosystem management (Peterson 2006), yet

results from such models are necessarily scale specific

(Morris 1987, Hobbs 2003, Boyce 2006). The practical

need to generate spatially explicit estimates of habitat

importance for applied management, such as the

designation of ‘‘critical habitat’’ as required by the

U.S. Endangered Species Act (ESA) and Canada Species

at Risk Act (SARA), presents significant challenges

when interpreting scale-dependent habitat suitability for

endangered species (Rosenfeld and Hatfield 2006).

Multiple scales of modeling may be required to

characterize the full context of habitat relationships

(Boyce 2006) and those factors that limit species

distributions (Rettie and Messier 2000). However, it

remains unclear how to integrate such multi-scale results

in applied management, where legal constructs such as

critical habitat lack a defined scalar context.

Resource selection has been categorized into an

intuitive string of hierarchically nested orders of the

behavioral selection process (Johnson 1980, Senft et al.

1987, Meyer and Thuiller 2006). A growing body of
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research has demonstrated widespread evidence for scale

dependence in resource selection across taxa (Hobbs

2003, Boyce 2006), yet a means of translating multi-scale

resource selection into integrated, spatially explicit

treatments of habitat suitability is lacking (Wiens

1989, Wheatley and Johnson 2009). Fine-scale resource

selection varies according to fine-scale resource avail-

ability (Mysterud and Ims 1998), which is itself the result

of broad-scale resource selection. For this reason, spatial

extrapolation of fine-scale models alone is not well

supported (DeCesare and Pletscher 2006), but broad-

scale models can be used to establish the spatial context

for their extrapolation (Johnson et al. 2004). Below, we

demonstrate that attention to this nested relationship in

multi-scale sampling design allows the estimation of

resource selection models with nested, conditional

probabilities of selection within scales. We then synthe-

size multi-scale conditional probabilities into a single,

scale-integrated function with direct application for

habitat management.

Assessment of habitat suitability for species conser-

vation should also include identification of limiting

factors (Morrison 2001). The importance of habitat

factors likely varies with scale, and applied research

addressing components of habitat requires cross-scale

comparisons of single-scale models to identify the

factors that are most limiting (Senft et al. 1987). For

example, Rettie and Messier (2000) hypothesized that

the fitness consequences of resource selection would

decrease at finer spatiotemporal extents. Following this

logic, they used multi-scale resource selection analysis to

conclude that predation limits populations of a threat-

ened ungulate, woodland caribou (Rangifer tarandus

caribou; Rettie and Messier 2000, Gustine et al. 2006), a

conclusion further supported by studies of caribou

population dynamics (Wittmer et al. 2005). Woodland

caribou (hereafter ‘‘caribou’’) were listed as endangered

under the ESA in the contiguous United States in 1984,

and as threatened (boreal and southern mountain

populations) under SARA in Canada in 2002. Federal

designation of critical habitat far exceeded legal

deadlines in both countries, which may be in some part

due to complications in delineating spatial boundaries

for a species with complex scale-dependent patterns of

resource selection (Environment Canada 2011).

The strength of predation in limiting caribou may be

enhanced by multiple sources of anthropogenic land-

scape change to caribou habitat (Wittmer et al. 2007,

Courbin et al. 2009). Commercial forestry subsidizes

other ungulate prey with preferred early seral-staged

forests and facilitates asymmetric predator-mediated

apparent competition and caribou declines (Seip 1992,

DeCesare et al. 2010). Anthropogenic linear features

such as oil/gas seismic exploration lines (James and

Stuart-Smith 2000) or trails (Whittington et al. 2011)

also promote caribou mortality by facilitating increased

predator (e.g., wolf, Canis lupus) hunting efficiency and

spatial overlap. Generally, the impacts of forestry upon

woodland caribou are mediated by an increase in the

numerical response of wolves (Seip 1992), whereas the
impacts of linear features are mediated by an increase in

the wolf functional response (James and Stuart-Smith
2000, McKenzie 2006). The numerical and functional

responses should theoretically act at broad (i.e.,
intergenerational) and fine (i.e., intra-generational)
spatiotemporal scales, respectively (Hassell 1966). If

predators indeed limit caribou dynamics, then the scale
at which a given disturbance type affects caribou may be

a function of the scale at which it affects the predator
response. We hypothesized that the mechanisms of

predation affected by forestry (numerical response) and
linear features (functional response) drive caribou

resource selection at broad and fine scales, respectively.
Here we estimate scale-integrated resource selection

functions (SRSFs) across three orders of selection to guide
caribouhabitatmanagement, andwe infer the relative roles

of two sources of anthropogenic disturbance, forestry and
linear features, in limiting caribou distributions. We used

hierarchical sampling to allow the integration of condi-
tional relative probabilities of selection across all three

scales. We then tested whether our SRSF’s could translate
complex, scale-dependent wildlife–habitat relationships

into unified and spatially explicit depictions of habitat
quality that could be readily incorporated into endangered
species recovery planning.

METHODS

Study area

We studied woodland caribou from both the Boreal
and Southern Mountain federal designations in nine

spatially distinct populations (Table 1; A la Pêche,
Banff, Brazeau, Little Smoky, Maligne, Narraway,

Redrock-Prairie Creek, Redwillow, and Tonquin) with-
in west-central Alberta and eastern British Columbia,

Canada. We defined a greater study area polygon that
encompassed the study populations and represented the

area historically available to caribou at the broadest
scale of selection considered. The study area boundary
traced natural bioregion (Natural Regions Committee

2006) and watershed boundaries, while excluding areas
occupied by neighboring, unsampled, caribou popula-

tions in British Columbia, and was supported by
historical observations of caribou in currently unoccu-

pied areas (ASRD and ACA 2010).
The greater study area spanned 73 566 km2 including

16 643 km2 of federally protected areas (National
Parks); 7258 km2 and 4813 km2 of provincially protected

areas (Provincial Wildland Parks and Wilderness Areas)
in Alberta and British Columbia, respectively; and

44 854 km2 of remaining lands primarily managed by
provincial governments for multiple uses including

forestry, oil, and natural gas industries. Protected areas
generally included more high-elevation mountainous

terrain compared to multiple-use lands, which were
predominately boreal conifer foothills. Forestry cut-

blocks (cut since 1950) comprised between 0% and 8.9%
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of the area within annual caribou ranges, and the

average density of non-road linear features (seismic lines

and maintained hiking trails) within annual ranges

ranged from 0.1 to 3.6 km/km2 (Table 1). The functional

footprint of disturbance features extends beyond their

immediate location (Dyer et al. 2001), and between 0–

22% and 7–87% of the area of each home range was

within 250 m of a cut-block and non-road linear feature,

respectively (Table 1).

Data collection and screening

We deployed global positioning system (GPS) telemetry

collars (LotekGPS 1000, 2000, 2200, 3300, 4400, and 7000

models; Lotek Wireless, Newmarket, Ontario, Canada)

during winters of 1998–2009 on 217 female caribou across

nine study populations using helicopter net-gunning

(Table 1). Capture protocols were approved by the

University of Montana Institutional Animal Care and

Use Committee (Animal Use Protocol 059-09MHWB-

122209), University of Alberta Animal Care Committee

(Protocol SCHM-2005-61), and Parks Canada Animal

Care Committee (JNP-2009-4052). We targeted adult

females for this study and for additional population

monitoring objectives, as they represent the segment most

responsible for driving overall population dynamics

(Eberhardt 2002). Woodland caribou within our study

area were partially migratory (McDevitt et al. 2009), and

we defined summer (16 May–16 October) and winter (17

October–15 May) seasons for separate analyses according

to nonlinear regression analysis of mean migration dates

(Appendix A; Bunnefeld et al. 2011).

After removing erroneous locations that were beyond

the possible range of study animals (D’Eon et al. 2002),

we used the methods of Bjørneraas et al. (2010) to

remove 270 error-induced spikes from a data set of

661 022 GPS locations. We further filtered and subsam-

pled data to include a uniform data set of locations

collected at three- or four-hour fixed intervals for

individuals with �180 locations per season, correspond-

ing to at least one month of monitoring. We withheld

�20% of animals for each population-season from

model training for external validation, except for the

Banff population (N ¼ 2 individuals). After these

screening procedures the model training data set used

for model construction contained 337 213 locations for

294 animal-seasons from 181 unique individuals, and the

testing data set used for validation contained 85 097

locations for 122 withheld animal-seasons. GPS location

acquisition success averaged 83% across individuals, low

enough for habitat-induced GPS bias to potentially

affect habitat modeling (Frair et al. 2010). We corrected

for potential habitat-induced bias of missed fixes using a

spatial model of the probability of successfully acquiring

a fix (Pfix) to estimate frequency weights (1/Pfix) for

inclusion in models (Frair et al. 2010). We estimated Pfix

using a model developed with test collars in an

overlapping study area (Hebblewhite et al. 2007),

though we recognize that estimates of Pfix developed

with stationary test collars do not account for the

interacting role of animal behavior in driving fix

acquisition (Augustine et al. 2011).

Sampling framework

Analysis of resource selection involves modeling the

response (used resources) to spatial heterogeneity

(available resources), where the scale of selection is a

function of sampling design. We adopt Meyer and

Thuiller’s (2006) update to Johnson’s (1980) terminol-

ogy and consider three orders of selection: S1, first-order

population-level selection of seasonal home ranges

within the species range; S2, second-order individual-

level of selection of seasonal home ranges within

population home ranges; and S3, third-order individu-

al-level selection of locations within seasonal individual

home ranges (Fig. 1). These three orders of selection are

conditionally nested (Meyer and Thuiller 2006, Schaefer

and Mahoney 2007), though rarely do ecologists take

advantage of these nested relationships to integrate

inferences across scales.

We used RSFs to translate environmental patterns of

resource selection into spatial predicted values propor-

tional to the probability of use for each order of

TABLE 1. Area, percentage of range area covered by cut-blocks, density of linear features (seismic lines and trails), percentage of
range area within 250 m of cut-blocks or linear features, and number of GPS-collared adult females (NGPS) for each of nine
woodland caribou population annual home ranges in west-central Alberta and eastern British Columbia, Canada, 1998–2009.

Population Area (km2)

Cut-block Linear feature�

NGPSArea (%) Area within 250 m (%) Density (km/km2) Area within 250 m (%)

A la Pêche� 2867 1.18 3.02 0.786 28.15 26
Banff� 157 0 0 0.248 11.60 2
Brazeau� 388 0 0 0.140 6.86 10
Little Smoky§ 1524 8.94 21.87 3.558 87.04 41
Maligne� 419 0 0 0.280 13.92 11
Narraway� 2561 0.95 2.69 0.266 10.89 39
Redrock-Prairie Creek� 4281 1.54 3.74 0.373 16.27 70
Redwillow� 1723 2.63 7.19 0.599 26.16 6
Tonquin� 511 0 0 0.203 9.66 15

� Linear features in this case included seismic lines and trails and excluded roads.
� Federally classified as southern mountain woodland caribou.
§ Federally classified as boreal woodland caribou.
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selection (Hirzel and Le Lay 2008). Theoretically, any

unit of geographic space (30 3 30 m pixel) within the

study area has distinct probabilities of being within the

population-level home ranges occupied by caribou

(P[S1]), being within an individual’s home range given

that it is within a population home range (P[S2] jP[S1]),

and being used by a caribou given that it is within an

individual’s home range (P[S3] jP[S2]). Models estimat-

ed for multiple scales have been multiplied together as a

form of model weighting (Johnson et al. 2004), but the

conditional relationship of selection across scales has

not been explicitly addressed by integrating models. We

sampled used and available locations in a hierarchically

nested manner (Fig. 1), which exploited the conditional

relationships of selection among scales such that S2 ¼
P(S2 jS1) and S3¼P(S3 jS2). This allowed the estimation

of an integrated relative probability of use for a given

pixel (wSRSF) as

wSRSF ¼ PðS1; S2; S3Þ ¼ PðS1Þ3 PðS2 jS1Þ3 PðS3 j S2Þ
¼ PðS1Þ3 PðS2Þ3 PðS3Þ: ð1Þ

We sampled S1 selection with a used-unused design

(Manly et al. 2002) by drawing a set of random locations

within our study area polygon equal in number to the

mean number of telemetry locations collected per season

(N ¼ 187 928, Fig. 1). We then designated locations as

used or unused distinctly for each of nine caribou

populations and two seasons according to whether they

fell inside or outside seasonal population home ranges.

We considered population home ranges to be a complete

depiction of broad-scale caribou use based on �20 years

of intensive caribou monitoring in this region, which

justified our choice of a used-unused sampling frame-

work at the S1 scale. For S2 and S3 selection analyses,

we treated individuals as samples of use and applied

used-available sampling (Manly et al. 2002, Johnson et

al. 2006). We quantified S2 selection by treating

population seasonal home ranges as available for

comparison with used individual seasonal home ranges

(Fig. 1). For each population-season, we drew an equal

number of random locations within both used (individ-

ual) and available (population) home ranges, and we

calculated the number of random locations as the mean

number of seasonal GPS locations collected per

individual. We evaluated S3 selection with a used-

available design by treating random locations within

each individual seasonal home range as available for

comparison with GPS telemetry-based used locations

(Fig. 1). Within available (individual) home ranges we

drew sets of random points equal to the number of

caribou GPS locations per individual-season.

We estimated population home ranges by buffering

GPS-based movement paths (Ostro et al. 1999) with the

across-population mean step length (SL) between

consecutive three- or four-hour locations during winter

FIG. 1. Schematic of the hierarchically nested sampling design followed for modeling woodland caribou resource selection at
three scales of selection in west-central Alberta and eastern British Columbia, Canada, 1998–2009, with a case example for a single
season (summer), population (Little Smoky), and individual (F555). For each scale, used and available locations were randomly
drawn within black and gray polygons, respectively, except for the third-order scale of selection where GPS telemetry locations
(shown in black) defined used locations.

June 2012 1071INTEGRATING SCALES OF RESOURCE SELECTION



(mean SL¼ 511 m) and summer (mean SL¼ 625 m). To

remove the effect of outlying locations, we then defined

the population home range as the intersection of a

polygon outlining all buffered movement paths and a

95% fixed-kernel isopleth (calculated with the reference

bandwidth [Worton 1989]; Fig. 1). For population-level

home ranges, we included unused areas enclosed by

movement paths as part of the home range polygon

(sensu Ostro et al. 1999); these unused lacunae

represented a mean of 8.0% of the total polygon areas.

We estimated seasonal individual home ranges similarly

by clipping buffered GPS-based movement paths with

both population- and individual-level 95% kernel

estimators (Fig. 1). Because clipped home ranges

excluded 5% of caribou locations, we removed those

same locations from the S3 analyses to maintain

comparable extents of use and availability.

Resource variables

The RSF models included a suite of topographic

(elevation, slope, aspect, topographic position, and

distance to water), climatic (percent snow cover and

distance to treeline), and vegetative (land cover type and

normalized difference vegetation index [NDVI]) explan-

atory variables. These variables have been found to be

important predictors of caribou occurrence in previous

caribou ecology research (see Appendix B for details of

resource variables; Johnson et al. 2004, Apps and

McLellan 2006) and may be considered as surrogates

to mechanistic conditions driving caribou space use such

as forage quantity and quality, thermal microclimates,

and safety from predation (Mitchell and Hebblewhite

2012). We created a base model for each order of

resource selection using scale-specific combinations of

resource variables (Appendix B).

We then compared the base models to global models,

which included both the base resource variables and

variables characterizing anthropogenic disturbance,

estimated using densities of forestry cut-blocks and

linear features (seismic lines and maintained hiking

trails; Appendix B). Notably, we did not include roads

in the layer of linear features for two reasons: (1)

available spatial roads data were digitized with different

precision across the provincial boundary, such that

much spatial variation in road density was an artifact of

data origin, and (2) roads and cut-blocks aligned closely

in principal components analysis of disturbance vectors

(N. DeCesare, unpublished data), suggesting that the

addition of roads captured relatively little additional

spatial heterogeneity in overall disturbance patterns. We

calculated densities for cut-blocks (proportionate area)

and linear features (km/km2) using circular neighbor-

hoods surrounding each raster pixel. We conducted

preliminary analyses using density estimates measured at

varying radii to identify the most predictive radius for

each order of selection (Apps et al. 2001). We pooled the

seasonal use-availability data for each order of selection

and then estimated a suite of logistic regression models

containing both cut-block and linear feature density

predictors measured at concentric radii from 1000 to

20 000 m at 1000 m increments for first- and second-

order selection and from 30 to 5000 m at 10 and 100 m

increments for third-order selection. We adjusted for

unequal sample sizes in the logistic regression models by

weighting individuals equally and populations according

to their relative area (Table 1). We selected the most

predictive radius according to the model with the

minimum Akaike Information Criterion (AICc; Burn-

ham and Anderson 2002), and this radius was then used

to characterize both feature densities for subsequent

analyses within a given order of selection.

Data analysis

We used logistic regression to compare resources of

used and unused (or available) locations for each order

of selection. We included quadratic terms to allow for

nonlinear relationships between resource variables and

the logit for S1 analysis of selection across the greater

study area. Quadratic terms were not consistently

supported in univariate evaluations of continuous

variables at finer scales of selection so we restricted

parameterization of continuous variables to linear terms

for S2 and S3 analyses to facilitate averaging coefficients

across individuals (Murtaugh 2007). We included only

those resource variables with predicted biological

relevance at each order of selection (Appendix B) and

did not include correlated (jrj . 0.7) variables or those

with variation inflation factors .10 (Montgomery and

Peck 1992). When models included the set of land cover

type indicator variables we set the most abundant land

cover type (closed conifer forest) as the reference

category, pooled with any other cover types that

represented an average of ,1% of available points per

population-season. For S3 analysis involving telemetry

locations, we used frequency weights of 1/Pfix to account

for habitat-induced biases in GPS fix success (Frair et al.

2010).

We treated resource selection as population-specific,

such that we estimated season- and population-specific

RSFs for each order, and we did not estimate statistical

models of data pooled across populations. For each

population (S1) and individual (S2 and S3) data set, we

fit two models: (1) a base model including all topo-

graphic, climatic, and vegetative predictor variables and

(2) a global model adding anthropogenic predictor

variables to the base model. We used AICc to assess

the relative support for models including and excluding

the effects of anthropogenic features. We averaged AIC

weights (wAIC) for models with and without anthropo-

genic effects for each population-season and removed

individuals with no measurable coefficients for either

disturbance variable (i.e., individuals with cut-block and

linear feature densities fixed at 0 within used or available

samples) from these averages. For S2 and S3 orders of

selection we then estimated two-stage, population-

averaged, global models (Marzluff et al. 2004, Fieberg

NICHOLAS J. DECESARE ET AL.1072 Ecological Applications
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et al. 2010) using Eqs. 2–4 to estimate inverse variance

weighted mean coefficients (b; Murtaugh 2007) averaged

across individuals i within populations j for each

parameter k and season s:

^̂bjks ¼
XN

i¼1

wijksb̂ijks ð2Þ

where wijks’s are seasonal individual parameter weights

estimated as

wijks ¼
1=½SEðb̂ijksÞ�2

XN

i¼1

�
1=½SEðb̂ijksÞ�2

� ð3Þ

and standard errors are estimated as

SE
^̂bjks

� �
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XN

i¼1

wijks b̂ijks �
^̂bjks

� �

N � 1

vuuuut
: ð4Þ

Standardizedcoefficientsoffer onemeansof comparing the

relative effect of predictor variables but their interpretation

is complicated when using logistic regression (Menard

2004). Wald statistics (the unstandardized coefficients

divided by their estimated standard errors) offer another

means for standardized comparison of the relative strength

of selection among variables (Goodman 1972) but are

sensitive to sample size (Hosmer andLemeshow 2000).We

estimated ‘‘standardized Wald statistics,’’ zstdz, for cut-

block and linear feature densities by dividing the Wald

statistic for each by the average of the absolute values of all

Wald statistics estimated for all predictor variables

included in global population-season models. These

standardized Wald statistics facilitated the comparison of

the direction and strength of selection for anthropogenic

features across orders of selection wheremodels differed in

sample units, sample sizes, and non-anthropogenic re-

source variables. Positive or negative values of zstdz
indicated selection for increasing or decreasing values in

thepredictor variable, respectively,while values.1or,�1
indicated above average selective response to a given

resource variable relative to others in the model. We

reestimated S1 models similar to S2 and S3 models, using

only linear (no quadratic) terms for continuous variables,

for this comparison.

Integrated habitat mapping

We generated population-level RSFs across three

orders of selection, two seasons, and nine populations.

More specifically, the used-unused design of S1 selection

models generated resource selection probability func-

tions (RSPFs), which estimated the probability of use,

whereas the used-available designs of S2 and S3 models

generated RSFs, which are proportional to the proba-

bilities of use (Manly et al. 2002). We spatially mapped

the per-pixel predicted values (wjs) for population-level

RSPFs and RSFs across the study area at a 30 3 30 m

resolution. We capped resource values according to the

minimum and maximum values sampled for each model
to avoid extrapolating predictions beyond the extent of

sampled data. We estimated S1 RSPF predicted values

following Manly et al. (2002), as

wjsðxÞ ¼
expðb0 þ b1x1 þ b2x2 þ . . .þ bkxkÞ�

1þ expðb0 þ b1x1 þ b2x2 þ . . .þ bkxkÞ
� : ð5Þ

We estimated S2 and S3 RSF predicted values as

wjsðxÞ ¼ expðb1x1 þ b2x2 þ . . .þ bkxkÞ ð6Þ

and used a linear stretch to rescale RSF predicted values
between 0 and 1 (Johnson et al. 2004):

ŵjs ¼
wjsðxÞ � wmin

wmax � wmin

� �
: ð7Þ

For each population-season, we estimated scale-inte-

grated resource selection functions (SRSFs), which

integrated selection across orders into a single relative
probability, as the product of the conditional relative

probabilities using Eq. 1. We stretched SRSFs to range

between 0 and 1 according to Eq. 7, and we generated
study area-wide weighted average SRSF maps for each

season by weighting the predicted values of SRSFs for
each population according to the relative proximity

between population home ranges and each pixel. Areas

within a population’s home range were predicted by that
population’s SRSFs, whereas areas outside of home

ranges were estimated with an inverse distance-weighted

average across populations. Thus the net contribution of
each population’s SRSF model to the averaged maps

was a function of both the area of that population and
its proximity to other populations.

Multi-scale model validation

We used validation procedures to assess how well

single-scale and scale-integrated resource selection mod-

els predicted woodland caribou habitat use across
different spatial scales. Specifically, we evaluated the

spatial predictions of all three single-scale models within

both the scales for which they were developed and the
remaining two scales, and we assessed the spatial

predictions of SRSFs across all scales. First, we spatially
extrapolated all S1, S2, S3, and SRSF models for each

population and season across all three scales of

availability: (1) S1 study area, (2) S2 seasonal population
home ranges, and (3) S3 seasonal individual home

ranges. We sampled predicted values of 50 000 random

locations within the study area, 10 000 random locations
within each population home range, and 1000 random

locations within each individual home range to charac-
terize the distributions of available predicted values at

each spatial scale. We then reclassified each model’s

predicted values into 10 ordinal, categorical ranks (1–10)
of equal area using the percentiles of predicted values for

each scale of availability (Boyce et al. 2002). We

measured woodland caribou use for each scale identi-
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cally as sampled for model development, using popula-

tion home ranges, individual home ranges, and individ-

ual telemetry locations to represent use for S1, S2, and S3

scales, respectively.

We validated models by comparing the relative

frequencies of woodland caribou use within each

category of model predicted values to the ranks of those

categories using Spearman rank correlations (rS),

following Boyce et al. (2002). We initially validated

models at all three scales internally by using the same

use-availability data that were used for model training.

We also validated S2 and S3 models (excluding the Banff

population) externally by using animals completely

withheld from model training (�20% of individuals per

population, as described above) as a means of robust,

external validation with independent data (Fielding and

Bell 1997). Last, we used a paired t test comparing rS
among scale-specific and scale-integrated models for

each population-season to test whether scale-specific

models for each scale validated better than scale-

integrated models.

RESULTS

Caribou selection response to anthropogenic features

was strongest when feature densities were measured

within radii of 12 000 m, 5000 m, and 70 m for first-,

second-, and third-order selection, respectively (Fig. 2).

Model weights (wAIC) comparing the strength of

evidence between our base models and global models

suggested a ubiquitous effect of anthropogenic features

on caribou resource selection across all three scales of

selection (Table 2). The average wAIC for models

including anthropogenic disturbance across individuals

and populations declined from 1.00 to 0.908 to 0.801 for

first-, second-, and third-order selection, respectively,

indicating that responses to human disturbance were

clearest at broader scales.

The relative strength of response to cut-block and

linear feature densities within models also varied across

orders of selection (Table 3, Fig. 3; see Appendix C for

full set of coefficients for all RSFs). Population-

averaged linear coefficients for cut-block density were

negative and stronger than other model coefficients at

the broadest scale of first-order selection of population

ranges (Fig. 3). Second-order selection of individual

home ranges showed weaker but similarly overall

negative coefficients for cut-block density, and third-

order selection within home ranges was inconsistent and

weak relative to cut-block density (Fig. 3). Selection of

linear feature density showed the opposite effect, being

relatively weak and inconsistent at the broader two

orders of selection, but consistently negative for third-

order selection of locations within home ranges (Fig. 3).

Thus at broad scales (S1 and S2) caribou avoided areas

of high cut-block density and responded inconsistently

to linear features, whereas at fine scales (S3) caribou

avoided areas of high linear feature density and

responded weakly to cut-blocks.

Scale-integrated RSFs performed well across all three

scales according to validation with used telemetry

locations. Internal validation of models using resubsti-

tuted training data indicated strong predictive capacity

when single-scale models were spatially applied to

extents for which they were developed (r̄s¼ 0.908; Table

4). However, extrapolation of single-scale models to

other extents revealed inconsistent and relatively poor

cross-scale predictive ability of single-scale models (r̄s ¼
0.450; Table 4). On the other hand, scale-integrated

resource selection functions (SRSFs; Fig. 4) validated

well across all three extents (r̄s ¼ 0.900; Table 4; Fig. 5;

Appendices D, E). External validation of S2 and S3

models with an independent data set of withheld animals

showed similar patterns, but slightly poorer fit of both

scale-specific (r̄s ¼ 0.674; Table 5) and scale-integrated

models (r̄s¼ 0.723; Table 5) to external data. As a final

test of SRSFs, we found no significant difference in the

predictive capacity of SRSFs and the relevant scale-

specific RSFs at each scale of selection according to

paired t tests comparing Spearman rank statistics using

both internal (t53¼ 0.345, P¼ 0.366) and external (t53¼
�0.684, P ¼ 0.751) validation data.

FIG. 2. Relative DAIC (DAIC/DAICmax) of
logistic regression models within three orders of
selection assessing the relationship between for-
estry and linear feature densities measured at
varying radii and woodland caribou resource
selection patterns pooled across populations and
seasons within west-central Alberta and eastern
British Columbia, 1998–2009.
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DISCUSSION

Scale-dependent effects of anthropogenic disturbance

We found support for our hypothesis whereby

anthropogenic disturbance previously linked to predator

numerical responses (forestry cut-blocks; Latham et al.

2011) drove first- and second-order caribou resource

selection and disturbance linked to predator functional

responses (linear features; McKenzie 2006) drove third-

order caribou resource selection. Predator functional

and numerical responses have also been described as

intrageneration and intergeneration responses, respec-

tively (Hassell 1966), which suggests a scale-specific

nature of predation paralleling that of prey resource

selection. Thus, our results support a predator-mediated

link between anthropogenic disturbance and woodland

caribou distributions across spatiotemporal extents.

Corroborating our results, scale-specific effects of

predation risk have been found in studies of resource

selection by ungulate prey (Gustine et al. 2006, Kittle et

al. 2008). Additionally, and with important implications

for population dynamics, our results also shed light on

the initial findings of Vors et al. (2007), who found two-

decade (i.e., intergenerational) time lags between forest-

ry activity and caribou extirpations in Ontario.

We show a scale-dependent trade-off, such that

avoidance of forestry cut-blocks must be achieved

before fine-scale avoidance of linear features becomes

predictive of caribou distribution. Theoretically, we

suggest that forestry disturbance presents a relatively

greater limitation to woodland caribou (sensu Rettie

and Messier 2000). Animals may exhibit resource

selection that conveys poor fitness consequences, par-

ticularly in recently human-altered systems (Battin

2004). However, for woodland caribou, fitness costs of

anthropogenic disturbance are evident. Two indepen-

dent meta-analyses found the combined footprint of all

anthropogenic and natural (fire) disturbances to explain

69% of the among-population variation in calf recruit-

ment (Environment Canada 2011) and 96% of the

among-population variation in annual population

growth rates (Sorensen et al. 2008). Fitness costs have

been associated with proximity to (James and Stuart-

Smith et al. 2000, Whittington et al. 2011) and density of

linear features (McKenzie 2006), and linear features also

may factor into the numerical response (Lee and Boutin

2006). However the ultimate costs to caribou habitat

suitability appear relatively less for linear feature-

induced changes to the predator functional response

(predator kill rate) than forestry-induced changes to the

predator numerical responses (predator density; Vuce-

tich et al. 2011).

Vors et al. (2007) observedanextinctiondebt, or lag time

betweenhabitat lossandextirpation, forwoodlandcaribou

in Ontario, and they recommended that buffers of intact

habitat should surround current population ranges to

ensure persistence. Our broad-scale (S1) selection results

support their suggestion that caribou spatial persistence is a

function of habitat factors beyond range boundaries and

that habitat protection, suchas critical habitat designation,

TABLE 2. Average AICc model weights, wAIC, of global woodland caribou resource selection
models including variables characterizing anthropogenic feature densities (cut-blocks and linear
features) when compared to base models excluding anthropogenic features (1� wAIC) across two
seasons, nine populations, and three orders of selection, Alberta and British Columbia, 1998–
2009.

Population

wAIC

First-order Second-order Third-order

Winter

A la Pêche 1.00 0.926 0.865
Banff 1.00 0.707 0.281
Brazeau 1.00 0.898 0.832
Little Smoky 1.00 1.000 0.835
Maligne 1.00 0.766 0.750
Narraway 1.00 0.955 0.751
Redrock-Prairie Creek 1.00 0.978 0.620
Redwillow 1.00 0.662 1.000
Tonquin 1.00 0.929 0.837
Average 1.00 0.869 0.752

Summer

A la Pêche 1.00 1.000 0.934
Banff 1.00 0.846 1.000
Brazeau 1.00 0.818 0.986
Little Smoky 1.00 1.00 0.991
Maligne 1.00 0.998 0.951
Narraway 1.00 0.987 0.620
Redrock-Prairie Creek 1.00 0.919 0.626
Redwillow 1.00 1.00 0.720
Tonquin 1.00 1.00 0.873
Average 1.00 0.952 0.856

Overall average 1.00 0.908 0.801
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should extend beyond range boundaries themselves. We

found broad-scale caribou distribution to bemost strongly

affected by cut-block density measured within 12 km radii.

This 12-km distance is of the same order of magnitude as

previously recommended tolerance distances between

caribou and cut-blocks of 9.2 km (Schaefer and Mahoney

2007), 11.1 km (Smith et al. 2000), and 13 km (Vors et al.

2007). However, the area-weighted average ages of cut-

blockswithin our greater study area andwithin population

home ranges were 13 and 7 years, respectively, relative to

our average date of animal capture. Thus, additional time-

lagged effects on predator-prey dynamics and caribou

demography may be yet underway, and caribou habitat

may take decades to recover.

At the finest scale of selection, we found caribou

distribution was most strongly affected by linear feature

density measured within 70 m radii, which seemingly

contradicts distances commonly used to represent the

zone of influence of linear features upon woodland

caribou, such as 250 m (Dyer et al. 2001, Sorensen et al.

2008) or 500 m (Environment Canada 2011). We

attribute this to two methodological differences between

our and previous studies: (1) we aimed to find the

distance at which the predictive capacity of a linear

feature density variable was maximized, rather than the

maximum distance at which avoidance could still be

detected (sensu Dyer et al. 2001), and (2) we character-

ized linear features as seismic lines and maintained trails

but excluded roads, which can affect caribou differently

than seismic lines (Dyer et al. 2002). The most predictive

radii for measuring feature density at each scale of

selection were not consistent when analyses were

restricted to particular population-seasons (N. DeCe-

sare, unpublished data), suggesting the realized zone of

influence of anthropogenic features may be vary by

population, season, and type of disturbance (Dyer et al.

2001, Polfus et al. 2011).

Integrating resource selection functions across scales

Resource selection functions and other species distribu-

tion models serve an applied role of converting ecological

niche relationships in environmental space into gradients

of predicted habitat suitability across geographic space

(Hirzel and Le Lay 2008). A wide range of species

distribution modeling techniques are available (Elith and

Leathwick 2009) and, in some applied cases, generalized

linear models may be outperformed by other techniques

(Cianfrani et al. 2010). However, scale dependency is

prevalent across all techniques (Hobbs 2003, Barve et al.

2011) and complicates their translation for applied

purposes. Scale-specific models yield scale-specific predic-

tions whereas land managers and conservation biologists

often require scale-independentmaps of habitat (Turner et

al. 1989). Though examples of consistent selection patterns

TABLE 3. Population- and season-averaged partial logistic regression coefficients (b), standard errors (SE), and standardized Wald
statistics (zstdz) for a subset of predictor variables describing cut-block and linear feature (seismic lines and trails) densities for
three scales of resource selection by woodland caribou in west-central Alberta and eastern British Columbia, 1998–2009.

Population

First-order selection Second-order selection Third-order selection

Cut-block
density

Linear feature
density

Cut-block
density

Linear feature
density

Cut-block
density

Linear feature
density

b SE zstdz b SE zstdz b SE zstdz b SE zstdz b SE zstdz b SE zstdz

Winter

A la Pêche �17.52 0.59 �1.40 0.59 0.02 1.54 �15.46 4.56 �1.73 �0.52 0.38 �0.70 0.67 0.26 0.75 �0.03 0.01 �1.26
Banff 0.15 0.27 0.06 0.86 0.94 0.75 0.03
Brazeau �3.03 0.30 �1.32 �4.54 4.02 �0.74 �0.18 0.05 �1.23
Little
Smoky

�4.98 0.30 �0.61 0.82 0.02 1.95 �5.82 1.55 �1.74 �0.47 0.16 �1.38 �0.01 0.22 �0.01 �0.02 0.00 �1.86

Maligne 0.47 0.09 0.44 1.83 0.54 3.61 �0.09 0.02 �2.09
Narraway �41.61 1.21 �1.53 �0.56 0.04 �0.60 �7.29 3.07 �1.27 1.06 0.20 2.84 �0.24 0.67 �0.07 �0.03 0.01 �0.94
Redrock-
Prairie
Creek

�16.78 0.52 �1.20 �0.82 0.03 �1.03 �1.28 2.06 �0.18 0.20 0.22 0.26 �0.33 0.20 �0.30 �0.02 0.01 �0.57

Redwillow �17.33 0.81 �0.91 �2.11 0.07 �1.34 �1.45 1.05 �0.63 �0.76 0.48 �0.71 �1.54 0.64 �0.98 �0.04 0.02 �0.94
Tonquin �0.20 0.10 �0.27 3.34 2.02 1.21 �0.07 0.04 �1.01

Summer

A la Pêche �24.79 0.80 �1.62 0.59 0.02 1.58 �21.74 10.55 �1.56 �0.30 0.48 �0.47 �0.31 0.57 �0.17 �0.08 0.01 �3.46
Banff 0.24 0.25 0.11 �0.98 �0.37
Brazeau �3.41 0.24 �1.01 1.17 3.02 0.48 �0.29 0.04 �2.68
Little
Smoky

�8.37 0.31 �1.23 0.89 0.01 2.79 �4.30 1.73 �1.54 �0.65 0.27 �1.46 �0.52 0.23 �0.59 �0.07 0.01 �2.80

Maligne 0.22 0.14 0.13 1.91 1.00 1.11 �0.13 0.00 �8.44
Narraway �14.26 0.66 �0.84 �1.98 0.08 �0.91 2.85 3.59 0.47 0.43 0.30 0.84 0.73 0.47 0.44 �0.05 0.03 �0.53
Redrock-
Prairie
Creek

�9.72 0.64 �0.70 �1.40 0.06 �1.03 �1.66 4.22 �0.33 �0.78 0.41 �1.60 0.40 0.30 0.41 �0.08 0.02 �0.98

Redwillow �4.62 0.70 �0.54 �2.11 0.10 �1.75 1.28 1.17 1.45 �0.24 3.55 �0.09 1.35 �0.03 0.01 �1.19
Tonquin 0.06 0.13 0.05 0.43 1.11 0.16 �0.09 0.04 �0.85
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across scales do exist (Schaefer and Messier 1995), we use

woodland caribou resource selection functions to demon-

strate that single-scale models cannot be reliably extrapo-

lated across scales. As a solution, we encourage

hierarchically nested sampling and analysis of use-avail-

ability data across scales as a means of transcending scale-

dependence in habitat modeling. Importantly, the product

of the resultant conditional probabilities yields a relative

probability of use that is integrated across all sampled

scales, or an SRSF. Rather than requiring the application

of differentmodels to guide conservation efforts directed at

different scales, scale-integrated models such as SRSFs

provide a singlemodel with predictive capacity across local

and landscape scales.

Scale-dependent habitat selection patterns have been

well documented for other species of conservation

concern, including Capercaille (Tetrao urogallus; Storch

2003), cutthroat trout (Oncorhynchus clarki; Harig and

FIG. 3. Box plots of scale- and season-specific standardized Wald statistics (zstdz) for predictor variables describing cut-block and
linear feature (seismic lines and trails) densities within global logistic regression models for three scales of resource selection by nine
woodland cariboupopulations inwest-centralAlberta and easternBritishColumbia, 1998–2009. The box plots show themedians (center
lines), first and third quartiles (enclosed in the boxes), adjacent values (whiskers), and outliers (points) of the estimates. Adjacent values
are the lowest and highest observations within 1.5 units of the interquartile range from the first and third quartiles.

TABLE 4. Spearman rank correlations (rS) and associated P values (in parentheses) correlating
woodland caribou resource selection function model predictions and observed frequencies of use
using internal, resubstituted training data for validation in west-central Alberta and eastern
British Columbia, 1998–2009.

Model Study area Population home range Individual home range

Winter

First-order RSPF 0.907 (0.005) 0.768 (0.065) 0.270 (0.204)
Second-order RSF 0.268 (0.179) 0.922 (0.001) 0.196 (0.236)
Third-order RSF 0.483 (0.070) 0.669 (0.184) 0.958 (,0.001)
SRSF 0.906 (0.005) 0.934 (0.004) 0.838 (0.025)

Summer

First-order RSPF 0.889 (0.006) 0.618 (0.166) 0.484 (0.202)
Second-order RSF 0.328 (0.143) 0.790 (0.069) 0.705 (0.169)
Third-order RSF 0.075 (0.288) 0.542 (0.230) 0.981 (,0.001)
SRSF 0.907 (0.004) 0.849 (0.040) 0.966 (,0.001)

Notes: Values in italic type indicate results for models being tested at the extents for which they
were developed, and values in boldface type indicate results for scale-integrated models.
Abbreviations are: RSPF, resource selection probability function; RSF, resource selection
functions; and SRSF, scale-integrated resource selection function.

June 2012 1077INTEGRATING SCALES OF RESOURCE SELECTION



Fausch 2002), Canada lynx (Lynx canadensis; Fuller and

Harrison 2010), Greater Sage Grouse (Centrocercus

urophasianus; Walker et al. 2007), and grizzly bears

(Ursus arctos; Ciarniello et al. 2007). Spatial quantifica-

tion of habitat suitability for such species is a common

step in recovery planning, and approaches that integrate

selection across scales into single spatial depictions of

habitat may best facilitate conservation (Storch 2003).

Other researchers wishing to integrate multi-scaled

selection models need not follow our exact sampling

approach, but must ensure the conditionality of model

predicted values. For example, for two models to be

hierarchically nested, the predicted values of the

broader-scaled model must represent both the probabil-

ity of being used at the broad scale and the probability

of being available at the fine scale. In other words,

treating what is available at fine scales as what is used at

broad scales ensures a hierarchically nested design (Fig.

1). Designs where the same set of telemetry locations is

repeatedly treated as a used sample for comparison with

FIG. 4. Sample maps showing predicted values for winter woodland caribou resource selection functions (RSFs) or resource
selection probability functions (RSPF), estimated at three scales of selection, a scale-integrated resource selection function (SRSF),
and GPS-based telemetry locations for woodland caribou within the Redrock-Prairie Creek population in west-central Alberta,
1998–2009.
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different samples of availability (e.g., Apps et al. 2001,

Gustine et al. 2006) will not allow conditional predic-

tions because the used and available locations for each

scale are not hierarchically nested.

On average, our patterns for natural covariates were

similar to those found in other studies (Appendix C),

including broad-scale selection for intermediate eleva-

tions and slopes (Johnson et al. 2004), and varying

degrees of fine-scale selection for gentle slopes and

conifer, shrub, and alpine vegetated land cover types

and avoidance of deciduous and rock/ice land cover

types depending upon population and season (Johnson

et al. 2004, Apps and McLellan 2006, Gustine et al.

2006). We used a proximity-weighted average of the

spatial predictions of population-specific SRSFs to

estimate multi-population SRSFs for each season (Fig.

6; Appendix F). We did not account for within-

population heterogeneity in selection that may occur

with partial migration (Hebblewhite and Merrill 2009),

and differences in the proportion of migratory individ-

uals between training and testing data sets may explain

some instances of poor fit (Appendices D; E; N.

DeCesare, unpublished data). Furthermore, distinct

selection patterns during potentially important life

history states such as calving (Gustine and Parker

2008) or migration (Sawyer and Kauffman 2011) may be

muted by the relatively brief proportionate time during

which they occurred.

The implications of our SRSF analysis for recovery

planning of this species are indicative of generally wide-

ranging benefits of scale-integrated habitat assessment for

species conservation. Specifically, our predictive SRSF

maps (Fig. 6,AppendixF)maybeused for directingbroad-

scale conservation efforts such as protected area strategy

and buffer-based area management (Woodroffe and

Ginsberg 1998) as well as for fine-scale management of

resource extraction practices such as spatial alignment of

linear features or forestry cut-blocks. Our models offer a

multi-scaled and predictive form of environmental impact

assessment, wherein the zone of influence of different

TABLE 5. Spearman rank correlations (rS) and associated P values (in parentheses) correlating
woodland caribou resource selection function model predictions and observed frequencies of use
using external, withheld testing data for validation in west-central Alberta and eastern British
Columbia, 1998–2009.

Model Population home range Individual home range

Winter

First-order RSPF 0.776 (0.124) 0.212 (0.326)
Second-order RSF 0.566 (0.093) 0.476 (0.273)
Third-order RSF 0.648 (0.079) 0.933 (0.001)
SRSF 0.903 (0.016) 0.795 (0.072)

Summer

First-order RSPF 0.223 (0.264) 0.062 (0.224)
Second-order RSF 0.344 (0.331) 0.456 (0.295)
Third-order RSF 0.397 (0.011) 0.853 (0.015)
SRSF 0.438 (0.087) 0.755 (0.070)

Notes: Values in italic type indicate results for models being tested at the extents for which they
were developed and values in boldface type indicate results for scale-integrated models.

FIG. 5. Area-adjusted proportions of internal validation used
locations within each ordinal bin of SRSF predicted values,
averaged across nine populations for winter and summer seasonal
models depicting woodland caribou resource selection at (a) first-
order (S1), (b) second-order (S2), and (c) third-order (S3) scales of
selection in west-central Alberta and eastern British Columbia,
1998–2009.
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anthropogenic disturbances (Polfus et al. 2011) can be

explored relative to multiple scales of caribou response.

These models may also be used to directly estimate the

scale-integrated changes in habitat suitability for future

extraction or restoration management proposals. Last,

given the biological, social, and legal complexities of

critical habitat designation as a component of protection

under the ESA and SARA, the spatial predictions of our

scale-integrated habitat suitability model offer a biological

and objective means of delineating explicit boundaries of

critical habitat.

Resource selection functions represent habitat suit-

ability as a continuous gradient and ascribe to a niche-

based definition of habitat (Gaillard et al. 2010).

However, other treatments of spatial habitat suitability,

such as legal boundaries of critical habitat or fragmen-

tation models of patch vs. matrix habitat, require

Boolean categorization of suitability into habitat and

non-habitat. Such ecological boundaries are arguably

over-simplified (Strayer et al. 2003, Hirzel and Le Lay

2008), although various techniques are available to

estimate threshold predicted values that discretize this

FIG. 6. Example scale-integrated resource selection function (SRSF) for the winter season using inverse proximity weighting to
average among the predicted values of nine populations’ global models (including both natural and anthropogenic covariate
effects) across three scales of selection for woodland caribou in west-central Alberta and eastern British Columbia, 1998–2009.
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gradient (Liu et al. 2005). Meaningful categorization

may require more than two states of suitability (Hirzel et

al. 2006), and thresholds in resource selection may be

more evident for some spatial scales than others (Fig. 5).

Potential thresholds in habitat suitability may be best

determined or validated with fitness-based measures of

response (Gaillard et al. 2010). In our study system,

further evaluation of the relationship between SRSF

predicted values and realized woodland caribou survival

and recruitment would best synthesize resource selec-

tion, fitness, and persistence measures inherent in the

definition of what is critical. Overall, we encourage the

incorporation of predictive RSF and SRSF maps within

an adaptive conservation framework (Johnson et al.

2004), to be refined with attention to site-specific

variation and habitat–demography relationships.
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Appendix E
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