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Abstract

Measuring the frequency of binary stars in dwarf spheroidal galaxies (dSphs) requires data taken over long time
intervals. We combine radial velocity measurements from five literature sources taken over the course of ∼30 years
to yield the largest multi-epoch kinematic sample for stars in the dSphs Draco and Ursa Minor. With this data set,
we are able to implement an improved version of the Bayesian technique described in Spencer et al. to evaluate the
binary fraction of red giant stars in these dwarf galaxies. Assuming Duquennoy & Mayor period and mass ratio
distributions, the binary fractions in Draco and Ursa Minor are -

+0.50 0.06
0.04 and -

+0.78 0.08
0.09, respectively. We find that a

normal mass ratio distribution is preferred over a flat distribution, and that log-normal period distributions centered
on long periods (m > 3.5Plog ) are preferred over distributions centered on short ones. We reanalyzed the binary
fractions in Leo II, Carina, Fornax, Sculptor, and Sextans, and find that there is <1% chance that binary fraction is
a constant quantity across all seven dwarfs, unless the period distribution varies greatly. This indicates that the
binary populations in Milky Way dSphs are not identical in regard to their binary fractions, period distributions, or
both. We consider many different properties of the dwarfs (e.g., mass, radius, luminosity, etc.) and find that binary
fraction might be larger in dwarfs that formed their stars quickly and/or have high velocity dispersions.

Key words: binaries: general – galaxies: dwarf – galaxies: individual (Draco, Ursa Minor) – galaxies: kinematics
and dynamics
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1. Introduction

Within the solar neighborhood, there are approximately one
to two times as many binary star systems as single stars
(Duquennoy & Mayor 1991; Raghavan et al. 2010). The
presence of binary systems is also expected within dwarf
spheroidal galaxies (dSphs), but the quantity is largely
unknown. If the fraction is similar to the solar neighborhood,
then the additional radial velocity components of the binary
systems can inflate the observed velocity dispersion in some
dSphs, which can impact inferences that draw upon the
kinematics, such as mass estimates. This effect can be corrected
if the attributes of the binary population—including binary
fraction and orbital parameter distributions like period, mass
ratio, and eccentricity—are well measured. Measurements of
the binary populations are also helpful in predicting the
frequency of type Ia supernova (e.g., Maoz & Hallakoun 2017)
and in putting constraints on star formation processes in dSphs
(Duchêne & Kraus 2013, and references therein).

A recent, detailed binary analysis has been performed on Leo
II (Spencer et al. 2017b), Carina, Fornax, Sculptor, and Sextans
(Minor 2013). Two of the remaining classical Milky dSphs,
Draco and Ursa Minor, were well studied in the early ages of
individual dSph stellar kinematics (Armandroff et al. 1995;
Olszewski et al. 1996; Hargreaves et al. 1996a), but their binary
populations have not been reviewed for the last two decades.
During that time, a number of new radial velocities have been
obtained for large samples of stars in Draco and Ursa Minor
(Kleyna et al. 2002, 2003; Wilkinson et al. 2004; Kirby
et al. 2010). This offers an opportunity to revisit our knowledge

of the binary populations in these galaxies. While it is unlikely
that binaries will significantly alter our view of the dark matter
content in classical dSphs, such as Draco and Ursa Minor, the
issue remains open-ended for the more recently discovered
ultra-faints.
Ultra-faints have exhibited much smaller dispersions (Simon

& Geha 2007), and while they are still believed to be dark
matter dominated, the role of binaries might be significant in
these cases. Velocity contributions from binaries on the order
of a few km s−1 are similar to the velocity dispersions of ultra-
faints and can act to widen the observed dispersions. It has
been shown that binaries are unlikely to inflate the observed
dispersions of dwarfs with σobs>4 km s−1 (i.e., classicals) by
more than 30% (Minor et al. 2010), but that binaries have up to
a 40% chance of boosting dispersions from near-zero values to
what is presently observed in dwarfs with σobs4.5 km s−1

(i.e., ultra-faints; McConnachie & Côté 2010). Other simula-
tions have shown that dwarfs with intrinsic dispersions of
1 km s−1 can be inflated by a factor of four for populations
extremely rich in binaries (Spencer et al. 2017b). The severity
of the effect varies among simulations due to the details of the
velocity samples and the shape of the distributions for the
binary orbital parameters. However, every case agrees that
dwarfs with low velocity dispersions have a high risk of being
inflated by binaries.
Large, multi-epoch kinematic surveys are needed to correct

observed velocity dispersion for the inflation caused by binaries
on a case by case basis, as was done for Segue 1 (Martinez
et al. 2011; Simon et al. 2011) and Bootes I (Koposov et al.
2011). Unfortunately, such data are not currently available for
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most ultra-faints. An alternative that can at least explore the
range in severity of binaries on the velocity dispersion is to
model the effects for different assumptions of the binary
fraction and binary orbital parameters. The test parameters can
be narrowed down by considering the values occupied by
classical dSphs. Properties of the binary populations in classical
dSphs are interesting in their own right, but they are also useful
in determining how adversely binaries are impacting the
velocity dispersions in ultra-faints.

In this paper, we aim to better constrain the binary fractions
in both Draco and Ursa Minor. We will then use this result plus
those from other classical dwarfs to estimate the binary fraction
in ultra-faints and provide examples on the severity of the
effect for ultra-faints. We explore whether or not binary
fraction is a constant quantity across all dSphs and also
comment on which of our tested period and mass ratio
distributions provide the best fit to the data. Section 2 describes
the data that we used—including the presentation of a new
spectroscopic data set for Ursa Minor—and Section 3 details
our methodology for finding the binary fraction. Our results are
in Section 4, and the summary and conclusions are in
Section 5.

2. Velocity Data

Our analysis aims to define the binary fractions in Draco and
Ursa Minor via the presence of velocity variability among the
stars. Data must meet several criteria to be used in this analysis.

1. The stars must be red giants. We make simplifications
later about the mass and period distributions for binary
stars by assuming that the primaries are red giants. The
same assumptions would not be true for main sequence or
horizontal branch stars.

2. The stars must be members of the dSphs. Binaries are
found in both dSphs and the MW halo, but the frequency
with which they are found is not necessarily the same.
Since we aim to find the binary fraction specifically
within dSphs, we do not want MW halo stars to skew the
results.

3. The available velocities cannot be averaged over multiple
observing epochs. Doing so would conceal the signatures
of velocity variability, which are key in our method of
determining the binary fraction.

4. The velocity errors must reflect the measurement
uncertainty. As we will see in Section 2.4, poorly
determined errors can increase or decrease the signifi-
cance of velocity variation, and thereby lead to incorrect
measurements of the binary fraction.

5. The stars must have multi-epoch observations. Velocity
variability is identified as a function of time, so we
require multiple observations.

There are six data sets each for Draco and Ursa Minor that
meet our criteria. These are summarized in Table 1. Column 1
lists the paper order as it appears in Section 2.1, column 2 lists
the reference paper, column 3 lists the data set abbreviation,
column 4 lists the number of stars in the data set that adhere to
the first four of the above criteria, column 5 lists the median
velocity error of those stars, column 6 lists the years when the
observations were taken, column 7 lists the number of stars
from the data set that we use in this analysis, and column 8 lists
the velocity offset that we apply to put the stars on the same
velocity standard. In this section we will first introduce the data

sets (Section 2.1) and then describe the ways in which we
trimmed them to meet our requirements (Sections 2.2–2.4).

2.1. Data Sets

The first data set is Olszewski et al. (1995, hereafter O95).
Using the echelle spectrograph on the Multiple Mirror
Telescope, they measured velocities every year between 1982
and 1991. They collected data for 24 stars in Draco and 18 stars
in Ursa Minor. Subsets of this data were presented in Aaronson
& Olszewski (1987, 1988) & Olszewski (1988).
The second data set (Armandroff et al. 1995, hereafter A95)

was obtained with the Hydra multi-fiber positioner and the
Bench Spectrograph on the KPNO 4m telescope. They
observed many of the same stars as O95 in both Draco and
Ursa Minor during the years 1992–1994. The sample expanded
greatly to include 91 stars in Draco and 94 in Ursa Minor.
The third data set was split into two papers, with Kleyna

et al. (2002, hereafter K02) focusing on Draco and Kleyna et al.
(2003, hereafter K03) focusing on Ursa Minor. They used the
AF2/WYFFOS fiber-fed spectrograph on the William Herschel
Telescope during the year 2000 for Draco and 2002 for Ursa
Minor.
The fourth data set (Wilkinson et al. 2004, hereafter W04) is

a follow-up to the previous K02 and K03 data, using the same
instrument and telescope. They took measurements in the year
2003 to compose a second epoch of data for about a third of the
Kleyna stars in Draco and about one half of the Kleyna stars in
Ursa Minor.
The fifth set of data was described in Kirby et al. (2010,

hereafter K10). They observed stars in both dwarfs during 2009
using Keck/DEIMOS. Additional stars in Ursa Minor were
observed in 2010, although these were not published. Each star
only received a single epoch of observations, but many of the
stars appeared in other data sets, making them useful to our
research.
The sixth data set comes from MMT/Hectochelle observa-

tions of Draco and Ursa Minor during the years 2006–2011.
The Draco data are already published (Walker et al. 2015,
hereafter W15), and we present the Ursa Minor data in
Section 2.1.1.
There were three other studies with radial velocities of red

giants in Draco and/or Ursa Minor, but these failed to meet one
or more of the criteria listed in Section 2. Jardel et al. (2013)
observed 13 stars in Draco during a single epoch, but only one
star exists in the other data sets. This sample does not
appreciably add to the size of the combined data or expand the
temporal information. It would also be impossible to put it on
the same velocity standard as the other data, given the minimal
overlap. (This step is described in Section 2.3.)
Muñoz et al. (2005) used Keck HIRES to obtain radial

velocities of 52 stars in Ursa Minor over two epochs separated
by 2 years. These were later supplemented with additional
observations of both Ursa Minor and Draco. Only the average
velocities from this observing program were available, so these
data could not be used in our analysis.
Lastly, Hargreaves et al. (1994, 1996b) published velocity

data for Ursa Minor and Draco, respectively. It was found that
the velocity errors of these data were systematically under-
estimated by about 15%, an effect likely caused by poor sky
subtraction (Armandroff et al. 1995). Underestimated velocity
errors would artificially increase the binary fraction that we
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measure; therefore we have chosen to exclude this data set from
our analysis.

2.1.1. New MMT/Hectochelle Observations of Individual Stars in
Ursa Minor

Before compiling a broader sample using previous studies,
we first we present new data from our spectroscopic
observations of individual red giant branch (RGB) candidates
in Ursa Minor, acquired using the Hectochelle multi-fiber
spectrograph (Szentgyorgyi 2006) at the MMT on Mount
Hopkins, Arizona. The observational setup (wavelength range
5160–5280Å, resolving power  ~ 20, 000) and data reduc-
tion procedures are identical to those that W15 describe in
detail for our previous study of Draco. Using the same
spectroscopic modeling procedure described by W15, we fit to
each spectrum a model that has free physical parameters

specifying line-of-sight velocity vlos, effective temperature Teff,
surface gravity glog , and metallicity [Fe/H]. Table 2 lists these
measured quantities, along with equatorial coordinates, helio-
centric Julian date of observation, and median signal-to-noise
ratio per pixel. Following W15, we list parenthetically for each
measured parameter the skewness, S, and kurtosis, K, of the
posterior probability distribution (PPD) function. These
quantities provide objective criteria for quality control—we
discard observations for which the posterior PDF for velocity is
significantly non-Gaussian, with >∣ ∣S 1 and/or - >∣ ∣K 3 1.
After applying this quality-control cut, the new observations

contribute 1407 observations of 973 unique RGB candidates in
Ursa Minor, including up to five distinct epochs of observation
for individual stars. The minimum, median, and maximum 1σ
errors for individual velocity measurements are 0.4, 0.7, and
3.7 km s−1, respectively. All wavelength-calibrated spectra, as

Table 1
Papers with Radial Velocity Data in Draco and Ursa Minor

Paper Paper Abbreviation N stars Median sv Years N stars voffset
Number Criteria (km s−1) Usable (km s−1)

Draco

1 Olszewski et al. (1995) O95 20 1.8 1982–1991 20 −0.41
2 Armandroff et al. (1995) A95 86 4.2 1992–1994 75 −0.41
3 Kleyna et al. (2002) K02 158 1.7 2000 140 −0.17
4 Wilkinson et al. (2004) W04 114 2.5 2003 96 −0.17
5 Kirby et al. (2010) K10 305 2.5 2009 123 0.21
6 Walker et al. (2015) W15 414 0.9 2006–2011 292 0.0

Ursa Minor

1 Olszewski et al. (1995) O95 16 1.9 1983–1989 16 0.06
2 Armandroff et al. (1995) A95 90 4.3 1992–1994 88 0.06
3 Kleyna et al. (2003) K03 64 5.1 2002 58 −1.07
4 Wilkinson et al. (2004) W04 146 2.9 2003 112 −1.07
5 Kirby et al. (2010) K10 336 2.4 2009–2010 136 −0.24
6 (Table 2) Tab2 404 1.0 2008–2011 250 0.0

Table 2
New MMT/Hectochelle Data from Individual Observations of RGB Candidates in Ursa Minora

α2000 δ2000 HJD S/Nb
vlos Teff glog10 [ ]Fe H

(hh:mm:ss) (°:′:″) (days) (km s−1)c (K) (dex)d (dex)

15:10:55.26 +66:46:53.2 2454614.87 8.9 −175.4±0.5(0.0,3.0) 4991±96(0.1,3.0) 2.0±0.2(−0.1,3.1) −1.55±0.12(0.0,2.9)

2454615.75 14.0 −176.5±0.4(0.1,3.2) 4960±71(0.0,3.1) 2.0±0.2(−0.0,3.0) −1.41±0.09(0.0,3.1)

2454615.83 13.8 −176.3±0.4(0.1,3.1) 4930±66(0.0,3.1) 2.0±0.1(−0.1,3.1) −1.43±0.08(−0.0,3.0)

2455232.94 7.1 −177.4±0.5(0.0,3.0) 4855±90(0.1,3.1) 1.3±0.2(−0.3,3.1) −1.37±0.11(0.0,3.0)

15:10:35.69 +66:45:56.2 2454614.87 11.8 −57.3±0.5(0.0,2.9) 4828±56(0.1,3.2) 5.1±0.2(0.2,3.2) −0.15±0.07(−0.0,2.9)

2454615.83 17.6 −57.3±0.4(0.1,3.1) 4829±53(0.1,3.0) 5.3±0.1(0.1,2.7) 0.01±0.06(0.0,3.0)

2455232.94 9.4 −57.9±0.4(0.2,3.3) 4789±58(−0.1,2.9) 5.2±0.2(0.2,3.1) 0.20±0.07(0.1,3.0)

15:11:01.43 +66:43:19.7 2455232.94 1.3 −302.4±1.8(−0.2,3.1) 4897±499(1.6,6.6) 1.7±0.8(1.1,4.1) −1.00±0.69(0.9,3.3)

15:08:29.92 +66:52:20.2 2454614.87 4.9 −248.9±1.5(0.4,3.7) 5110±473(0.7,3.6) 3.6±0.7(0.1,3.2) −2.65±0.50(0.5,2.9)

2454615.83 8.6 −247.1±1.0(0.2,3.0) 4653±193(0.4,3.0) 1.5±0.5(0.5,2.7) −2.99±0.22(0.5,3.2)

2454915.94 6.2 −247.0±1.4(−0.0,3.3) 5170±349(0.4,3.6) 1.4±0.6(1.2,4.8) −2.54±0.34(0.0,3.3)

2455232.94 5.8 −245.5±1.2(0.0,3.3) 4536±176(0.8,3.6) 1.2±0.4(0.6,3.0) −3.06±0.19(0.8,4.0)

2455659.75 7.6 −245.7±1.2(−0.2,3.2) 5121±478(0.6,3.3) 2.3±0.8(0.1,2.5) −2.76±0.52(0.4,2.6)

Notes.
a See the electronic edition for a complete data table.
b Median signal-to-noise ratio per pixel.
c Line-of-sight velocity in the heliocentric rest frame.
d Units of g are cm s−2.

(This table is available in its entirety in machine-readable form.)
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well as our model fits, are available in a Zenodo archive at
10.5281/zenodo.1413660.

2.2. Sample Definition

Each data set was trimmed to match the needs of this
analysis, as described in Section 2. For O95 and A95, we
removed four or five carbon stars, as we are only concerned
with RGB stars here.

The K02, K03, and W04 data sets contained stars both in the
dSphs and in the MW foreground. We removed the halo stars
on the basis of radial velocity. Normally, a wide cut in velocity
risks including MW members, while a narrow cut risks
excluding dSph binaries. However, the location of the cut
turned out not to matter much in this case, because most of the
stars just inside or just outside this limit were discarded later
because they only had one epoch of observations, even after
combining with the other data sets. The membership criteria
that we used were - < < -v330 250mem km s−1 for Draco
and - < < -v300 200mem km s−1 for Ursa Minor. There is
still some possible contamination from the Milky Way, but we
expect this to only be a few stars. The effect of such
contamination on our results will be negligible.

For K10, measurements with velocity errors larger than
10 km s−1 were discarded. Velocity nonmembers were present
in the Draco data, so we removed likely foreground stars that
had velocities less than −320 km s−1 or greater than
−265 km s−1. These limits are the same as what we applied
to the W15 data set, which is described later.

The samples of W15 and Table 2 contained larger data sets
and probed fainter stars, so they incurred many more
nonmembers than the other studies. For this reason, we spent
extra care separating the members from the nonmembers by
considering velocities and surface gravities. Figure 1 serves as
a visual aid for cuts that we made.

The following describes the procedure for defining the
membership criteria for each galaxy using the MMT data of

(W15) and Table 2. We started by taking the average radial
velocity for each star. In the top panels of Figure 1, we plot
Gaussian kernel density estimates of the radial velocities in
black. This was done by adding together for each star a
Gaussian with area equal to unity, location equal to the average

radial velocity = S S
s s( )v v 1i

i i
2 2 , and width equal to the

weighted velocity uncertainty s = S
s

-⎛
⎝⎜

⎞
⎠⎟( )1 1 2

i
2 . There is a

sharp peak around −290 km s−1 for Draco and at −250 km s−1

for Ursa Minor, and a wide bump of Milky Way foreground
stars that have slower radial velocities.
For illustrative purposes, we generated a Besançon model

(Robin et al. 2003) that simulates the kinematics of Milky Way
stars along the line of sight to each of the dwarfs. We made another
Gaussian kernel density estimate for the Besançon stars and set the
width of each kernel equal to the median weighted velocity error of
the dwarf under consideration. This value was 0.6 km s−1 for both
dwarfs. We normalized the Besançon model such that the area
under the curve in the range of −200<v<−20 km s−1 for
Draco (or −160<v<−20 km s−1 for Ursa Minor) was equal to
the area under the black line over the same range. The model is
shown as a blue line in Figure 1.
In the middle panels of Figure 1, we also plot regular

histograms of the radial velocities. It is clear from both of these
representations that there will be contamination from the Milky
Way. The Besançon models confirm the expectation that for
such faint stars, most of the MW contaminants are main
sequence stars. Therefore, contaminants will have significantly
higher surface gravities, as can be seen in the bottom panels of
Figure 1. The samples of W15 and Table 2 include
measurements of surface gravity, so we have adopted a cutoff
at =glog 4.0 to separate nonmember main sequence stars
( glog 4.0) from possible Draco/Ursa minor member red
giant and sub-giant stars ( <glog 4.0).

Figure 1. Velocity and surface gravity histograms for Draco (left) and Ursa Minor (right). Top: Gaussian kernel density estimates of radial velocity from the MMT/
Hectochelle data sets of W15 and Table 2 (black), and from a Besançon model of MW foreground stars (blue). Middle: histogram of the average radial velocities in the
MMT/Hectochelle data. The red line is the histogram of the final member selection. Vertical dotted lines demarcate the velocity boundary for membership. Bottom:
histogram of the surface gravities in the MMT/Hectochelle data. The red line shows the histogram for the final member selection. The vertical doted line shows the
membership cut in surface gravity.
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We then determined the radial velocity cuts that we should
use by simultaneously deriving the systemic velocity and
velocity dispersion of the dwarfs from the culled samples. The
velocity dispersion and systemic velocity are found by a
method of maximum likelihood described in Walker et al.
(2006), which assumes that velocities are drawn from a
Gaussian distribution. A first guess for the velocity member-
ship boundaries is required for this method, so we used three
times the standard deviation of a best-fit Gaussian, as shown in
the middle panels of Figure 1. Stars within this velocity range
were used to calculate the velocity dispersion and systemic
velocity. The resulting velocity dispersion can be used to make
new 3σ velocity boundaries. Then we repeated the process of
calculating the velocity dispersion and systemic velocity until it
converged on an answer within 0.1 km s−1. This took three to
four iterations.

The resulting membership criteria for Draco were
−319.4<v<−265.2 km s−1 and <( )glog 4.0. The systemic
velocity for Draco is −292.3±0.4 km s−1 with a velocity
dispersion of 9.0±0.3 km s−1. Previously reported average,
median, or systemic velocities are −293.3±1.0 km s−1

(A95), - -
+293.8 2.7

2.6 km s−1 (Hargreaves et al. 1996b), and
- -

+290.7 0.6
1.2 km s−1 (W04), all of which agree with our findings.

The velocity dispersion has been reported as 10.7±0.9 or
8.5±0.7, depending on the inclusion of one peculiar star
(A95), 8.2±1.3 km s−1 (O95), -

+10.5 1.7
2.2 km s−1 (Hargreaves

et al. 1996b), and 9.1±1.2 km s−1 (McConnachie 2012). Our
measurements are in good agreement with the literature,
especially given the large range of reported values.

For Ursa Minor, the membership criteria were - <270.9
< -v 222.9 km s−1 and <( )glog 4.0. The systemic velocity for

Ursa Minor is −246.9±0.4 km s−1, with a velocity dispersion
of 8.0±0.3 km s−1. The average velocity was previously
found to be −247.2±1.0 km s−1 (A95), −249.2±1.5 km s−1

(Hargreaves et al. 1994), and - -
+245.2 0.6

1.0 km s−1 (W04). Our
measurement falls between these values. The velocity dispersion
was listed as 10.4±0.9 or 8.8±0.8 km s−1, depending on the
inclusion of peculiar stars (A95), 10.5±2.0 km s−1 (O95),
8.8 km s−1 (K03), and 9.5± 1.2 km s−1 (McConnachie 2012).
Our velocity dispersion is lower than all the other measurements,
but the agreement is still within 1.3σ for all but one case. Several
studies have found that the kinematics of Ursa Minor are better
fit by a two-component model (Kleyna et al. 2003; Wilkinson
et al. 2004). We do not explore more complicated dynamical
models because the velocity distribution on the right side of
Figure 1 appears to be sufficiently Gaussian, and thus the method
we used to determine membership should be valid.

In the limiting case where all stars are binaries, we estimate
that an average of only 1% of member stars will not meet the
velocity membership criteria due to binary orbital motion, and
therefore the cuts we impose should not have an affect on our
binary analysis.

2.3. Correcting Systematic Offsets

Because we have incorporated data from a variety of
different sources, it is possible that there are systematic offsets
between the data sets. We have chosen W15 as the reference to
which all the distributions will be shifted for Draco, and the
data set presented in Table 2 as the reference for Ursa Minor. In
Figure 2 we plot velocities from W15 or Table 2 along the
x-axis and velocities from the other studies along the y-axis
when stars exist in both catalogs. The black solid line is where

stars would fall if they had perfect mean agreement. The red
dashed line indicates the best fitting line with a slope set equal
to 1. The y-intercept of the line indicates the offset
between W15 or Table 2 and others. We correct the velocities
such that = -v v v_study corrected study offset. Two outlier stars
in K10 were not used in the fit for Draco, and they are shown
as open triangles in the bottom left panel of Figure 2.
A95 found that an offset of 1.59 km s−1 existed between

their data and that of O95. We add the same offset to the A95
data and plot the combined data set in the top panel to perform
a comparison with W15 and Table 2. This was necessary
because only a couple stars were observed in common between
the W15/Table 2 and O95 data, making it impossible to
perform the necessary comparison otherwise.
K02, K03, and W04 are also included in the same panel

because the methods of observation and velocity extraction
were identical, and they showed no signs of zero-point offsets
between observing runs.
In Draco the offsets are −0.17 km s−1 for K02 and W04,

−0.41 km s−1 for O95 and A95, and 0.21 km s−1for K10. In
Ursa Minor the offsets are −1.07 km s−1 for K03 and W04,
0.06 km s−1 for O95 and A95, and −0.24 km s−1 for K10.

2.4. Velocity Uncertainty

A crucial element of this analysis is having accurate radial
velocity errors. Underestimated errors will inflate the binary
fraction, while overestimated errors will decrease it. To
determine if the errors are an accurate representation of the
scatter in the velocity data, we use the ck

2 statistic, defined as

åc
k s

=
- á ñ

k

⎛
⎝⎜

⎞
⎠⎟ ( )v v1

, 1
i

n
i

i

2
2

where vi and σi are a single velocity and corresponding error
measurement, á ñv is the average velocity for a star, κ=n−1
is the number of degrees of freedom, and n is the number of
observations per star. The probability of exceeding ck

2 is
c k( )P ,2 . In Figure 3 we plot histograms of c k( )P ,2 under the

assumption that all stars are velocity non-variables. If the errors
are accurate and there are no intrinsic velocity variables with
resolvable Δvʼs, then the distribution should be flat. If the
errors are over/underestimated and there are no stars with
resolved Δvʼs, the histograms would be biased toward higher/
lower P values. If binaries exist with Δvʼs comparable to the
observational errors and the errors are well-determined, then
the lowest bin, c k< <( )P0 , 0.012 , would be enhanced
relative to the mean χ2 value.
As a test of the precision of our error estimates and the

existence of binaries, we have fit two lines to the histograms in
Figure 3; one line has a fixed slope of zero and the other has a
variable non-zero slope. In Draco, the flat line had a y-intercept
of 2.96±0.15, and the expectation was 3.03 (calculated as the
number of stars with P(χ2, κ)>0.01 divided by 99 bins). The
slope in the second line had a 1σ error bar as large as the value,
indicating that it is consistent with being flat. The good
agreement of the line being flat indicates that the velocity errors
in Draco accurately represent the data. In Ursa Minor, the
results are very similar. The flat line had a y-intercept of
2.47±0.14, and the expectation was 2.49. Once again, the
slope of the second line had errors as large as the value. We
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draw the same conclusion for Ursa Minor as Draco: the
velocity errors are not over- or underestimated.

2.5. Summary of Velocity Data

In Draco there are 692 unique member stars, 341 of which
have multiple observations. There are a total of 1204 velocity
measurements for the subset of stars with multiple observa-
tions. These data are listed in Table 3. In Ursa Minor there are
680 unique member stars. A total of 284 of them have multiple
observations. There are a total of 875 measurements for the
stars with multiple observations, which are listed in Table 4. In
both of these tables, column 1 lists the identifier that we assign
to the star, column 2 lists the number of observations, column 3
lists the right ascension, column 4 lists the declination, column
5 lists the heliocentric Julian date, column 6 lists the radial
velocity and error, and column 7 lists the paper from which the
velocity measurement originated. Because we applied offsets to
most of the velocity data to put them on the same standard (see
Section 2.3), the velocities we report in the tables will not
match the values listed in the original papers.

Some important aspects of these velocity data are highlighted
in Figure 4. In the top panel we plot a histogram of the number
of observations per star, n. The maximum number of
observations in Draco is 11, and in Ursa Minor the maximum
is 10. The middle panel is a histogram of the amount of time
elapsed between the first observation and the last observation for
each star. Both dwarfs have a handful of stars with time intervals
as long as 25 years. Finally, the bottom panel is a histogram of
the number of measurements taken per year. The bins are labeled
with the study that produced the measurements.

3. Methodology

The term “binary fraction” has taken on several slightly
different definitions and names, such as companion frequency,
multiplicity frequency, and multiplicity rate (e.g., Olszewski
et al. 1996; Duchêne & Kraus 2013). In the present study, we
consider two stars that are gravitationally bound to one another
to be a binary system. We define the binary fraction, f, to be the
fraction of all apparently single stars that turn out to be binary
systems based, in our case, on their velocity variability. We do
not consider photometric binaries because the remoteness of
the systems makes these hard to detect, though wide binaries
may exist in dSphs (e.g., Peñarrubia et al. 2016). The
constituent stars of a binary system do not get double counted
by this definition of the binary fraction. This definition is
sufficient for our study because we are considering only binary
systems containing red giants, which are unlikely to pair with
similar stars due to their comparatively short lifetimes.
The goal of this study is to determine the binary fractions of

the stellar populations comprising the Draco and Ursa Minor
dSph galaxies. Our analysis considers all of the stars as a
collection and does not distinguish which stars are most likely
to be binaries. The method for determining the binary fraction
that we adopt in this chapter is similar to that described in
Spencer et al. (2017b, hereafter Paper I), but with some
changes. The primary steps of the process involve defining
the binary parameter distributions (Section 3.1), running
Monte Carlo (MC) simulations of the velocity variability
(Section 3.2), performing a Bayesian analysis on the data and
simulations (Section 3.3), and extracting a binary fraction from
the posterior (Section 3.4).

Figure 2. Comparison of literature velocities to those of W15 for Draco (left) and Table 2 for Ursa Minor (right). The solid black line is where stars should fall if they
have perfect agreement across studies, and the red dashed line shows the best-fit line with slope set equal to 1. The offset that is applied to each data set is the y-
intercept of the red dashed line.
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3.1. Binary Parameters

As described in Paper I, there are seven parameters that go
into determining the orbital radial velocity of a binary. They are
mass of the primary (m1), mass ratio (q), period (P),
eccentricity (e), true anomaly (θ), inclination (i), and argument
of periastron (ω). The first four parameters are intrinsic to the
system, and the last three reflect the geometry of the system
with respect to the observer. The equation that relates these
parameters to the orbital radial velocity is

p
q w w=

- +
+ +

⎛
⎝⎜

⎞
⎠⎟( )

( ( ) )

( )

v
q i

e

Gm

P q
e

sin

1

2

1
cos cos .

2

r,orb
2

1
2

1 3

For a derivation and additional details of this equation, see
Green (1985) or Spencer (2017).

3.1.1. Mass of Primary, m1

The mass of the primary, m1, can be set at a fixed value of
m1=0.8Me because all of the stars in our sample are
extremely old and are located along the RGB. All of the other
parameters will vary from binary to binary. Mass ratio, period,
and eccentricity are somewhat dependent on one another, so
they will be drawn in the same order every time to ensure that
the dependencies are preserved.

3.1.2. Mass Ratio, q

In this study, mass ratio is defined as =q m m2 1, where m1

is the primary red giant star and m2 is the secondary star. We
assume that the secondary is a non-giant. We select the
minimum mass ratio to be qmin=0.1. This requires the
secondary companion to be a hydrogen-burning star with a
mass of at least 0.08Me. For these stellar populations, the main
sequence turnoff mass is 0.8Me, which corresponds to a
maximum value of qmax=1.

We selected two mass ratio distributions to investigate in our
simulations. The first is a normal distribution from Duquennoy
& Mayor (1991, hereafter DM91), which is described by

m

s
µ -

-⎛
⎝
⎜⎜

⎞
⎠
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( )dN

dq

q
exp

2
. 3

q
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The parameters that they found to best describe their data were
σq=0.42 and μq=0.23. The second distribution,

= ( )dN

dq
const, 4

is constant across all mass ratios. This was used in Raghavan
et al. ( 2010, hereafter R10), as well as many other papers. The
two distributions are plotted in Panel (A) of Figure 5.

3.1.3. Period, P

The period distribution has the largest effect on the binary
fraction (Minor 2013; Spencer et al. 2017b). For this reason, we
consider three different period distributions to get a better
understanding of the range of allowable binary fractions. This
also allows us to rule out very high or very low binary
fractions. Most studies have found that a log-normal form
provides the best fit to the observed periods of binary stars in
the solar neighborhood, so we will select this form and change
the parameters in the equation. The notation for this period
distribution is

m

s
µ -

-⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

( )
( )dN

d P

P

log
exp

log

2
, 5

P

P

log
2

log
2

where m Plog is the center of the distribution and s Plog is the
width. The period is expressed in units of days. In addition to
fixing the functional form, we also fixed the second parameter,
s Plog , at 2.3 log(days) (DM91). This makes it easier to discern
the effect that m Plog has on the inferred binary fraction. We first
select m = 4.8Plog . This value was found by DM91 to provide
the best fit to F7 to G9 type stars in the Solar Neighborhood. A
larger study by R10 recovered m = 5.03Plog from their sample
of F6 to G2 type stars. Because these two values are so similar,
we opted to only use the first prescription.
The second value of m Plog we considered is for K and

M-dwarf stars (Fischer & Marcy 1992, hereafter FM92). They
found that the peak in Plog occurred at much lower values
between 3.5 and 4.9. We selected the smaller value for m Plog
because this provided a distribution that was more discrepant
from the one defined previously.
The third period distribution is theoretical in nature and

comes from Marks & Kroupa (2011, hereafter MK11). They

Figure 3. Probability of exceeding χ2. The left panel is Draco and the right panel is Ursa Minor. With the exception of the lowest bin, which contains binaries, the
histograms are uniform, suggesting that the velocity errors are properly reported.
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explored how the shape of the period distribution for main
sequence stars might change with respect to spectral type, birth
cluster clump size, and star formation rate. We selected their
solution for a dwarf irregular galaxy in their Figure 9. This
distribution is not log-normal, but instead is skewed toward
longer periods. We fit a log-normal to their distribution and find
that m = 5.8Plog does the best job of reproducing it, and so we
adopt this for the last value of m Plog .

The minimum and maximum binary periods expected for red
giants in Draco and Ursa Minor can be constrained by
considering the semimajor axes, a, compatible with these stars
in such environments. The minimum semimajor axis occurs
when the stellar surfaces are just out of contact. The primary
star is a red giant with a radius much larger than the secondary,
so we estimate amin as the radius of the primary. Assuming a
mass of M0.8 and a surface gravity of about 10 cm s−2, the
radius works out to be about 0.21 au. Using Kepler’s third law,
this corresponds to a period of =Plog 1.57min for a mass ratio
of 0.1 or =Plog 1.44min for a mass ratio of 1.

The maximum semimajor axis is the maximum extent that a
binary can reach before the gravitational force from its partner
is less than that of neighboring stars in the galaxy. If we
consider the gravitational unbinding of a binary due to the
encounter with another star to be a “collision,” then the
minimum semimajor axis can be thought of as the cross-section
in the equation for mean free path. This yields the equation

ps l= -( )a tvmax
1 2, where σv is velocity dispersion, t is the

average age of the stars, and λ is the number density of the
stars. We calculate the number density by converting central
luminosity density to mass density with the assumptions that
a star has an average mass of 0.4Me and that µL L

( )M M 4. For Draco, we used 9.0 km s−1 as the velocity
dispersion (Section 2.2), 10 Gyr as the average age (Aparicio
et al. 2001), and 0.008 Le pc−3 as the central luminosity
density (Mateo 1998). For Ursa Minor, we used 8.0 km s−1 as
the velocity dispersion (Section 2.2), 10 Gyr as the average age
(Carrera et al. 2002), and 0.006 Le pc−3 as the central
luminosity density (Mateo 1998). This places Plog max between
6.71 and 6.84 log(days) for Draco, and between 6.83 and 6.96
log(days) for Ursa Minor, depending on the mass ratio. These
three period distributions and the limits are shown graphically
in Panel (B) of Figure 5.

3.1.4. Eccentricity, e

Eccentricity only has a small effect on the observed binary
fraction (Minor et al. 2010; Spencer et al. 2017b); therefore we
selected a single distribution for this parameter. We used the

one from R10:

µ ( )dN

de
const. 6

Another choice would have been a thermal distribution (i.e.,
=dN de e2 ), but it has been shown by Duchêne & Kraus

(2013) that binary main sequence stars with periods greater
than 100 days do not follow this trend. We note that binaries
with short periods (on the order of 10–20 days) will have
circular orbits. However, we do not need to include this
condition because binaries with such short periods would have
been destroyed as the primary ascended the RGB (Iben &
Livio 1993; Nie et al. 2012).
The eccentricity can range from 0 to 1, but in many cases the

maximum value must be lower to prevent the stars from
colliding, as can happen with certain combinations of P and q.
This limit is set by = - ( )e a a1max min , where a is the
solution for the semimajor axis from Kepler’s third law, given
q and P as noted previously.

3.1.5. True Anomaly, θ

The true anomaly, θ, is the angle between the lines
connecting the periastron to the focus and the focus to the
location of the star along its orbit. It dictates where the star is in
its orbit. This angle is dependent on the eccentricity and period
in such a way that it has no analytical solution. Instead, we
define a distribution for the area swept out by the star since it
passed periastron. Kepler’s second law states that within a
gravitationally bound binary system, the radius vector of each
component will sweep out an equal area in a given amount of
time relative to the position of the other star. By normalizing
the area so that periastron corresponds to 0 or 2πand apastron
corresponds to π, we can redefine area as the mean anomaly γ.
The frequency of a star being observed at any γ is constant;
thus

g
= ( )dN

d
const. 7

The true anomaly can then be numerically solved for using the
mean anomaly and the eccentricity. Once the mean anomaly at
the time of the first observation is selected, the location of the
star in its orbit at all later times will be described by
g g p= + D( )t P21 , where Δt is the time elapsed since the
first observation.

Table 3
Velocities of RGB Stars in Draco

Star ID n aJ2000 dJ2000 HJD va Reference
(hh:mm:ss.ss) (dd:mm:ss.ss) (days) (km s−1)

Draco-001 2 17:15:36.04 57:48:34.40 2455707.8 −287.1±1.4 W15
Draco-001 2 17:15:36.04 57:48:34.40 2455712.8 −289.2±1.4 W15
Draco-002 2 17:15:41.94 57:37:05.50 2455707.8 −299.5±2.2 W15
Draco-002 2 17:15:41.94 57:37:05.50 2455712.8 −299.0±1.7 W15
Draco-003 2 17:16:01.59 57:59:19.10 2455707.8 −282.9±0.8 W15
Draco-003 2 17:16:01.59 57:59:19.10 2452813.0 −285.2±3.0 W04

Note.
a Velocities after correcting for systematic offsets. Only stars with multi-epoch velocity measurements are included.

(This table is available in its entirety in machine-readable form.)
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3.1.6. Inclination, i

Inclination, i, is the angle between the observer’s line of
sight and the normal to orbital plane of the system. It ranges
from 0 (face on) to 90 degrees (edge on) and has the form

µ ( ) ( )dN

di
isin . 8

3.1.7. Argument of Periastron, ω

Finally, the argument of periastron, ω, is the angle between
the ascending node of the orbit and the periastron point. It
ranges from 0°to 360°. All values have an equal probability of
occurring so we can write the distribution as

w
= ( )dN

d
const. 9

The distributions of all the parameters described in this
section are plotted in Figure 5.

3.2. MC Simulations

The purpose of the MC simulations produced for this study
is to generate a series of radial velocities that would be
expected for a given binary fraction and compare those
velocities with our observed radial velocities. The MC
simulation that most resembles the data will tell us what the
binary fraction is, under the assumptions of the simulations and
given the binary parameter distributions described in
Section 3.1. We have chosen to perform our analysis on the
entire set of velocity data simultaneously for a given dwarf
galaxy—Draco or Ursa Minor—rather than considering the
binarity of each individual star, as has been done by others
(Minor et al. 2010; Martinez et al. 2011; Cottaar & Hénault-
Brunet 2014).

Since we are only concerned with velocity variability, the
mean motion of each star within the potential of a dwarf galaxy
is irrelevant for this part of the analysis We consider the change
in velocity by defining a statistic as

b
s s

=
-

+

∣ ∣
( )

v v
, 10

i j

i j
2 2

where v is the radial velocity and σ is the corresponding
uncertainty in velocity. The subscripts i and j denote different
observations of the same star. Stars with more observations will
have more βʼs and thus provide better leverage on the binary

fraction. The number of βʼs per star is calculated as
-( )n n 1 2, where n is the number of observations per star.

The collection of βʼs for a dSph is what we aim to reproduce
with MC simulations. Our simulations employ data from the
observational catalogs of Draco and Ursa Minor—radial
velocity uncertainty and the Julian date of each radial velocity
measurement—along with the binary fraction, binary parameter
distributions, and parameter limits described in Section 3.1.
With these data and parameter inputs, we carry out the
following steps to generate MC simulations of β, using binary
fraction f as the primary variable:

1. While going through each star in the input data sets for
Draco or Ursa Minor, we randomly assign the star as a
member of a binary system based on the binary fraction,
f, being tested.

2. If the star is a binary according to Step 1, then we
randomly select a value for each of the seven binary
parameters according to the distributions described by
Equations (3)–(9). If the star is not a binary, this step is
skipped.

3. We then calculate the radial velocity for the star. If the
star is a binary, this value comes from Equation (2). If the
star is not a binary, this value is 0 km s−1. (Zero signifies
that the star has no velocity variation induced by a
binary.)

4. We then resample the velocity from Step 3 by adding a
Gaussian deviate with standard deviation equal to the
velocity uncertainty for that observation.

5. Steps 3–4 are repeated n times, where n is the number of
observations for that star. All binary parameters from
Step 2 are kept the same for an individual star except for
the true anomaly, θ. This parameter is advanced by an
amount corresponding to Δt, as described in the
paragraph surrounding Equation (7).

6. We then calculate the βʼs for that star by using
Equation (10).

7. Steps 1–6 are repeated for all stars in a given galaxy’s
database. (There were 341 stars in Draco and 284 in Ursa
Minor.)

8. Steps 1–7 are repeated η times. Unless noted, we typically
adopted η=104.

9. If a range of binary fractions was being investigated, we
then repeated Steps 1–8 for each binary fraction under
consideration. In most cases, we tested binary fractions
from 0 to 1 in increments of 0.01.

Table 4
Velocities of RGB Stars in Ursa Minor

Star ID n aJ2000 dJ2000 HJD va Reference
(hh:mm:ss.ss) (dd:mm:ss.ss) (days) (km s−1)

UrsaMinor-001 2 15:04:55.74 66:28:39.91 2454616.8 −235.5±0.8 Tab2
UrsaMinor-001 2 15:04:55.74 66:28:39.91 2455232.9 −234.9±1.3 Tab2
UrsaMinor-002 2 15:05:29.84 67:12:43.69 2455659.7 −245.9±1.9 Tab2
UrsaMinor-002 2 15:05:29.92 67:12:43.52 2452769.0 −263.9±7.8 W04
UrsaMinor-003 2 15:05:44.64 67:03:11.11 2454615.3 −250.5±0.5 Tab2
UrsaMinor-003 2 15:05:44.70 67:03:11.12 2452769.0 −260.9±2.1 W04

Note.
a Velocities after correcting for systematic offsets. Only stars with multi-epoch velocity measurements are included.

(This table is available in its entirety in machine-readable form.)
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3.3. Bayesian Technique

Next we compare the “base distribution”—the distribution of
β values from the observations, βobs—with the distributions of
βʼs from the MC simulations, βmod. Our aim is to determine the
probability that the base distribution can be reproduced by
βmod, given a certain binary fraction, f. One way to address this
is through a Bayesian analysis. To begin, we can write Bayes’
theorem as

=( ∣ ) ( ∣ ) ( ∣ )
( ∣ )

( )P f D M
P D f M P f M

P D M
,

,
, 11

where the data, D, is βobs from the observations, and the model,
M, is βmod from the MC simulations. ( ∣ )P f M is the prior and
contains any previous knowledge that we might have had on
the binary fraction before we began the analysis. This term is
set equal to 1 because we have no prior constraints on f. The
denominator, ( ∣ )P D M , is a normalization factor that we select
such that the integral of the posterior, ( ∣ )P f D M, , is equal to
unity. These two simplifications mean that the posterior is
directly proportional to the likelihood of the data being
produced by a given binary fraction and set of mod-
els, ( ∣ )P D f M, .

Deriving the equation for likelihood is somewhat compli-
cated, so we include Figure 6 to help illustrate the process for
the case of f=0.5. We start by placing the βʼs into bins
according to their value. In the top panel of Figure 6, we show
this ordering as a red dashed histogram for βobs. A similar
histogram for βmod is shown as a solid black line. We only

show one of these to enhance readability, but there are in fact
η=104 of these βmod histograms.6 We then define the number
of βobs in bin x as N(x)obs. This is represented by the vertical red
dashed line in the second panel of Figure 6 for the first bin. The
number of βmod in a given bin, x, for a certain simulation
number, j={0,1, 2 ... η}, is ( ∣ )N x j mod. The histogram for

( ∣ )N x j1 mod is shown as a black solid line in the second panel of
Figure 6.
One could, in principle, use the histogram of =( ∣ )N x j1 mod

as the probability mass function to compute a likelihood.
However, this would yield a very noisy posterior. Instead, it is
best to use a smooth function for the probability mass function.
We have found that a Poisson function does a good job of
reproducing ( ∣ )N x j mod, which can be written as

f m
m m

=
-

( ( )∣ )
( )

( )!
( )

( )

N x
N x

exp
. 12x

x
N x

x

There is only one parameter in this distribution, μx, the average
number of βmod in the bin x (m h= åh

=( ) ( ∣ )N x j1x j 1 mod). In
cases where μx was greater than 100, the equation became
numerically unstable, so we approximated it as a Gaussian with
location μx and standard deviation equal to mx . We plot the

Figure 4. Summary of Draco data (left) and Ursa Minor (right). Top: histogram of number of observations per star. Middle: histogram of maximum time interval
length per star. Bottom: histogram of number of measurements taken per year. Bins are labeled with the paper that produced the measurements (see Table 1 for
abbreviations).

6 The ability of the MC simulations to reproduce βobs is discussed in
Section 4. Cumulative histograms of β are plotted later in Figure 9, which show
how much β can vary between MC simulations. Histograms of MC simulations
for f=0 are also in Figure 9. Small values of β are dominated by measurement
error, whereas large values, greater than about 3–4, are most likely caused by
binary motion.
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corresponding Poisson function for the first bin,f m( ( )∣ )N x1 1 , as
a green long-dashed line in the middle left panel of Figure 6.
Bin number 60, f m( ( )∣ )N x60 60 , is also plotted on the right to
show that a Poisson function does a good job of representing

( ∣ )N x j mod for bins with either large or small values of β.
The likelihood for a single bin is then Equation (12)

evaluated at ( )N x obs. This can easily be extrapolated to the
likelihood over all bins by taking the product of the likelihoods
from each bin. Recalling that the posterior is proportional to the
likelihood, we finally arrive at

 f mµ( ∣ ) ( ( ) ∣ ) ( )P f D M N x, . 13
x

xobs

We repeated this calculation over all f and normalized it such
that å ==

= ( ∣ )P f D M, 1f
f

0
1 .

There are two key parameters that we have yet to discuss that
play a role in the posterior. They are bin size and number of
bins. The bin size must be smaller than the largest β for a given
f. This limit is set by the f=0 case and works out to be about
2.5. If the bin size is larger than this value, then the
probabilities for f=0 and other small f will be indistinguish-
able. In addition, ( ∣ )N x j mod is only well fit by a Poisson when
the bin size is 0.05. Bin sizes larger than 0.05 but smaller
than 2.5 can still recover the binary fraction, but a skewed
normal must be used in place of a Poisson (Paper I).

The number of bins must be large enough to encapsulate all
of the βʼs, both observed and modeled. The largest values of
βmod are usually around 90, which equates to about 2000 bins.

Additional bins that reach beyond the maximum value of β
have no effect on the posterior, so it is always better to have too
many bins than too few.
Because the Poisson distribution only has one well-defined

parameter, it is computationally fast to calculate the posterior.
As such, we have decided to solve for the posterior using 11
different bin sizes between 0.044 and 0.058. Then we add up
all of the resulting posteriors and divide by 11 to normalize it
once again. The final result is a less noisy posterior. In the
bottom panel of Figure 6, we plot the 11 individual posteriors
in gray and the averaged posterior in blue. We take the median
of the posterior to be the binary fraction, because this was
shown shown in Paper I to best reproduce the binary fraction in
mock galaxies.
A final note worth mentioning is that while this method is

similar to that in Paper I, there are two key changes. The first is
that we use a much smaller bin size, and continue binning up to
the largest value of β. The previous method only used a total of
six bins and lumped all βʼs larger than 4 into one bin. One
consequence of this was that we needed to fit a skewed normal
function to ( ∣ )N x j mod rather than the much simpler Poisson that
we have used here. Second, our earlier method in Paper I used
only one bin size to find the posterior, whereas we have taken
the average of 11 here. Without this addition, the posteriors

Figure 5. Binary parameter distributions used in our simulations. Panels (A)–
(C) are based on observations or theory from Duquennoy & Mayor (1991; solid
lines), Raghavan et al. (2010; dashed lines), Marks & Kroupa (2011; dotted
line), and Fischer & Marcy (1992; dotted–dashed line). Vertical lines in Panel
(B) indicate the range in the upper and lower boundaries caused by the mass
ratio. Panels (D)–(F) are based on observational geometry.

Figure 6. Top: The histogram of βobs is shown as a red dotted line. For
readability, we plot only one histogram of a single Monte Carlo simulation with
f=0.5, which is shown by the black solid line. Middle: histograms of the
number of bmod in bin 1 (b < 0.05, left) and bin 60 ( b< <3.0 3.05, right).
The η=104 MC models are fit with a green long-dashed line. The vertical red
dashed line marks the number of βobs in the bin. Bottom: PPDs for a single bin
size are shown in gray. The normalized sum of these is shown in blue. These
particular PPDs are for Draco with a normal mass ratio distribution and a log-
normal period distribution located at m = 4.8Plog .
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from Paper I could shift a few percent to the right or left as a
result of the wide binning. As we will see in Section 4, both
methods produce the same binary fraction for Leo II. However,
the slight variability of binary fraction with bin size seen in our
earlier analysis (Paper I) becomes negligible using our new
methodology.

3.4. Repeatability

To ensure that our method produces accurate results, we
applied it to a series of test cases where the binary fraction was
known. We considered 500 MC realizations for 11 binary
fractions that were evenly spaced from f=0 to f=1. These
mock galaxies were based on the velocity errors and
observation times from the Draco data set. In all cases, we
adopted a Gaussian mass ratio distribution (DM91) and a log-
normal period distribution centered on m = 4.8Plog (DM91). In
Figure 7, we plot the difference between the observed binary
fraction that our method recovered and the intrinsic binary
fraction that was programmed into the galaxy. Black dots
indicate the median observed binary fraction from the 500
mock galaxies. The error bars indicate the range that includes
68% of the galaxies. The horizontal dotted line is the
expectation, and it is indeed what we find for the majority of
the mock galaxies. The only exception is the case where f=1,
and presumably other very high binary fractions ( f0.9),
where the binary fraction is consistently underestimated by a
few percent. Since it is physically unlikely for the binary
fraction of an old stellar population to be near 1 (Goodwin
et al. 2007, and references therein), this discrepancy at high
values is not a significant problem for realistic cases.

4. Results

Six combinations of mass ratio and period distributions were
used to generate six complete sets of MC simulations, and
consequently six PPDs of the binary fraction for each dSph. In
Figure 8, we plot all of the PPDs for Draco and Ursa Minor,
respectively. The top row shows the posteriors with a normal
mass ratio distribution (DM91), and the middle row has a
constant mass ratio distribution (R10). The left column uses a

log-normal period centered at m = 3.5Plog (FM92), the middle
column is centered at m = 4.8Plog (DM91), and right column is
centered at m = 5.8Plog (MK11). The median of each posterior,
which we adopt as the binary fraction, is listed in the top right
corner of each panel.
As expected, the binary fraction is larger for higher values of

m Plog . Changes to the period distribution also have the largest
effect on the posterior. Increasing m Plog from 3.5 to 5.8
increases the binary fraction by about 30% for Draco and about
40% for Ursa Minor. Alternatively, the mass ratio distributions
we sampled from can only change the resulting binary fraction
by 5%–10% for a given period distribution.
Certain clear correlations arise for specific adopted para-

meters. For example, the smallest f in both Draco and Ursa
Minor is found with a constant mass ratio distribution (R10)
and a log-normal period distribution with a location of
m = 3.5Plog (FM92). The largest binary fraction for both
galaxies corresponds to a normal mass ratio distribution
(DM91) and a log-normal period distribution with m =Plog

5.8 (MK11). The smallest and largest binary fractions found in
Draco are -

+0.29 0.03
0.03 and -

+0.69 0.06
0.07. For Ursa Minor, the binary

fraction ranges from -
+0.45 0.05

0.05 to -
+0.96 0.06

0.03. Although the binary
fractions vary considerably with the binary orbital parameters,
we can still rule out >f 0.86 and f<0.22 in Draco with 99%
confidence. Similarly, binary fractions below 0.32 can be ruled
out with 99% confidence in Ursa Minor. It should be noted that
while these limits do depend on binary orbital parameters, it is
not likely that the binary fraction will be beyond these limits,
because we specifically chose parameter distributions that
explored the largest range of observed parameters. A full
summary of the PPDs is provided in Table 5.
Note that the distribution of βobs from the observations do

not perfectly match the distributions of βmod from the
simulations. This can be seen in the cumulative distributions
of β in Figure 9. βobs is shown as a black line, the envelope
enclosing 68% of the βmod from the MC models with the best
fitting binary fraction is shown in blue, and the red envelope
encloses 68% of the βmod for the case of zero binaries. The top
two panels are for Draco and Ursa Minor, and the remaining
panels are for additional dSphs that we consider in the next
section. The discrepancy between the observations and the
best-fit models are more pronounced in some of the other
galaxies than they are for Draco and Ursa Minor. Taken as a
whole, this suggests that the binary parameter combinations
that we used do not reflect the actual parameters found in the
dwarfs. Although beyond the scope of this work, it seems
possible that some constraints could be put on the mass ratio
and period distributions by considering the shape of the β
distributions. The best we can do here is comment on which of
the six parameter sets provides the best fit to the observations
for the cases of Draco and Ursa Minor.
We repeat the Bayesian analysis from Section 3.2 that was

used to generate the PPDs in Figure 8, with one adjustment. We
normalize the posterior such that the sum of all six PPDs for
each of the models is equal to one, rather than the sum of each
individual PPD being equal to one. Because these are relative
probabilities, their values have no physical meaning, but
comparisons between models can be used to say which model
is more likely, and by how much. In Figure 10, the relative
probability for each of the six models over all values of f is
shown as a solid line; the relative probability over the 68%

Figure 7. The median observed binary fraction, fobs, for 500 mock Draco-like
galaxies is plotted against the intrinsic binary fraction, fint. The horizontal
dotted line is where the observed binary fraction perfectly matches the intrinsic
binary fraction. Error bars show the range of observed binary fractions that
68% of all mock galaxies fell between.
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credible interval is shown as a dashed line. Parameter
distributions are listed above each bar in the figure.

In all cases, the models with the DM91 mass ratio
distribution were more likely than the models with the R10
mass ratio distribution for any given period distribution. For a
given mass ratio distribution, the models with m = 3.5Plog (as
in FM92) always had the lowest probability. The set of
parameters that best reproduced the data in Draco was
the DM91 mass ratio distribution and a period distribution
with m = 5.8Plog , which corresponded to a binary fraction of

-
+0.69 0.06

0.07. For Ursa Minor, the best parameters were the DM91
mass ratio distribution and DM91 period distribution
(m = 4.8Plog ), which had a binary fraction of -

+0.78 0.08
0.09. The

three best fitting models—DM91 mass ratio distribution with
either m = 4.8Plog or m = 5.8Plog , and R10 mass ratio
distribution with m = 5.8Plog —are the same for both dwarfs.
While we cannot comment on the absolute parameters of the
mass ratio and period distributions, we can say that the DM91
mass ratio distribution is preferred over the R10 distribution,
and that the period distribution peaks toward longer periods. A
more continuous exploration of the parameter distributions
should yield better constraints on the period and mass ratio
distributions. Since the DM91 parameter distributions are
preferred by Ursa Minor and are more commonly found in
other binary literature works, we use those parameters in the
discussion that follows.

4.1. Binary Fractions among Dwarfs

Binary fractions for Carina, Fornax, Sculptor, and Sextans
have previously been reported by Minor (2013) based on
MMFS/Magellan data from Walker et al. (2009a). These data
spanned about 1 year and had 2–4 repeat observations. Due to

the limits on n and Dtmax, that data set was not ideal for a
binary fraction analysis, but it still proved suitable to produce
broad PPDs that ruled out some binary fractions. Given these
results, it was natural to consider combining them with our
results for Draco, Ursa Minor, and Leo II (Spencer et al. 2017b)
to explore the behavior of the binary fraction across the more
luminous MW dSph systems. However, there are some
differences between our methods and those in Minor (2013)
that make a simple combination of results problematic and
potentially misleading. For example, they used a different
eccentricity distribution, applied an error model to their
analysis, and performed the Bayesian analysis on a star-by-
star basis rather than as a data set, all in contrast to the approach
we describe here. Since a comparison still seems desirable, we
chose to apply our methodology to the MMFS/Magellan data
used by Minor (2013) to ensure consistency among binary
fraction calculations.
The MMFS/Magellan data set contains both member and

nonmember stars of their respective dwarf galaxies (Walker
et al. 2009a). We chose to select stars as members if they were
within three times the velocity dispersion of the systemic
velocity. The velocity dispersions and systemic velocities that
we derived using the method from Section 2.2 are listed in
Table 6. These velocity dispersions were also used in
conjunction with the luminosity densities from Mateo (1998)
to derive amax. We assume that the reported velocity error
measurements are accurate. (Systematically overestimated
errors would lead to an underestimated binary fraction, whereas
underestimated errors would lead to an overestimated binary
fraction.) The results of our simulations for a normal mass
ratio distribution and log-normal period distribution with
m = 4.8Plog (i.e., parameters equivalent to those in the top-
center panels of Figure 8) agree very well with those from

Figure 8. Top panels are PPDs and bottom panels are cumulative PPDs for Draco (left) and Ursa Minor (right). The parameters used in the simulations are listed on
the top and right axes of the PPDs. DM91=Duquennoy & Mayor (1991), FM92=Fischer & Marcy (1992), R10=Raghavan et al. (2010), MK11=Marks &
Kroupa (2011).
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Minor (2013) in three of the four cases. Our binary fractions for
Carina, Fornax, Sculptor, and Sextans are -

+0.20 0.13
0.09, -

+0.87 0.09
0.12,

-
+0.58 0.17

0.15, and -
+0.71 0.14

0.15, respectively. Those from Minor (2013)
are -

+0.14 0.05
0.28, -

+0.44 0.12
0.26, -

+0.59 0.16
0.24, and -

+0.69 0.23
0.19. These binary

fraction results are displayed in Table 7.
The discrepancy between values for Fornax is almost

certainly due to the treatment of the velocity errors. Minor
(2013) estimated that the velocity errors on Fornax were under-
reported by a factor of 55%. We can also see that the histogram
of c k( )P ,2 for Fornax exhibits some strange behavior. The

number of stars per bin is not uniformly biased toward low P,
as one would expect for a systematic underestimate of the
velocity errors. Rather, there are some bins in the middle of the
distribution that contain more values than expected by Poisson
errors. Since we are not set up to treat improperly reported
velocity errors in our simulations, it is not surprising that our
results are very different from what was previously reported.
We ran two additional simulations in which we applied a
constant corrective factor to the velocity errors. In the first case
we multiplied the errors by a factor of 1.55 to match the
estimates from Minor (2013), which yielded a binary fraction
of -

+0.22 0.09
0.11. In the second case we multiplied by a factor of

1.15 because we found this provided the best correction to our
c( )P 2 histogram. It yielded a binary fraction of -

+0.61 0.13
0.15.

It is curious that Minor (2013) finds such a large discrepancy
between the reported velocity errors (Walker et al. 2009a) and
their own velocity error estimates for Fornax but not for the
other dwarfs, because all of the data were taken on the same
instrument and often during the same run. An alternative to the
Fornax errors being largely underestimated is that Fornax
actually has a large binary fraction. Binary fraction and velocity
errors are somewhat hard to disentangle. If the errors have been
underestimated, then the binary fraction will appear large; if the
binary fraction is large, then the errors will appear to be
underestimated. The best way to determine velocity errors in
the context of binaries is on a nightly basis by comparing the
measurements from multiple exposures. Or if that is not
possible, then using exposures taken over the course of a
couple nights should suffice. Velocities observed over such
short timescales should not have any significant velocity
variability caused by binaries and should represent the
observational errors.
A binary fraction for Leo II was reported in Paper I, but since

the method in that chapter was slightly different than the one
here, we chose to run a new set of MC simulations for Leo II as
well. We used the normal mass ratio distribution and log-
normal period distribution with m = 4.8Plog , as was done for
Carina, Fornax, Sculptor, and Sextans. The binary fraction for
Leo II came out to be -

+0.36 0.08
0.07, in good agreement with the

previous results. The posteriors for all seven dwarfs are plotted
in Figure 11, and the binary fractions are listed in Table 7.
The posteriors cover a large range of binary fractions, yet

their distributions are wide and all overlap around 0.55–0.60.
This overlap region is small, suggesting that binary fraction is

Table 5
Median and Credible Intervals of PPDs for Draco and Ursa Minor

Galaxy q Distribution s Plog (log days) m Plog (log days) e Distribution Median ( f ) 68.2% Interval 95.4% Interval

Draco normal (DM91) 2.3 (DM91) 4.8 (DM91) constant (R10) 0.50 0.44–0.54 0.40–0.58
Draco normal (DM91) 2.3 (DM91) 3.5 (FM92) constant (R10) 0.34 0.30–0.36 0.27–0.40
Draco normal (DM91) 2.3 (DM91) 5.8 (MK11) constant (R10) 0.69 0.63–0.76 0.56–0.83
Draco constant (R10) 2.3 (DM91) 4.8 (DM91) constant (R10) 0.42 0.39–0.46 0.35–0.51
Draco constant (R10) 2.3 (DM91) 3.5 (FM92) constant (R10) 0.29 0.26–0.32 0.24–0.35
Draco constant (R10) 2.3 (DM91) 5.8 (MK11) constant (R10) 0.60 0.54–0.65 0.49–0.71

Ursa Minor normal (DM91) 2.3 (DM91) 4.8 (DM91) constant (R10) 0.78 0.70–0.87 0.63–0.95
Ursa Minor normal (DM91) 2.3 (DM91) 3.5 (FM92) constant (R10) 0.52 0.47–0.59 0.42–0.64
Ursa Minor normal (DM91) 2.3 (DM91) 5.8 (MK11) constant (R10) 0.96 0.90–0.99 0.83–1.00
Ursa Minor constant (R10) 2.3 (DM91) 4.8 (DM91) constant (R10) 0.67 0.60–0.74 0.53–0.82
Ursa Minor constant (R10) 2.3 (DM91) 3.5 (FM92) constant (R10) 0.45 0.40–0.50 0.35–0.55
Ursa Minor constant (R10) 2.3 (DM91) 5.8 (MK11) constant (R10) 0.92 0.83–0.98 0.75–1.00

Note. DM91=Duquennoy & Mayor (1991), FM92=Fischer & Marcy (1992), R10=Raghavan et al. (2010), MK11=Marks & Kroupa (2011).

Figure 9. Cumulative histograms of β for each of the seven dSphs. The
observations are a black line. The blue envelope encloses 68% of the Monte
Carlo realizations for the best fitting binary fraction. The red envelope encloses
68% of the Monte Carlo realizations for zero binaries.
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not a constant property across all dwarfs. Nevertheless, it is still
valuable to determine the probability that the binary fraction is
the same and, if it is the same, what value it takes on.

For the purpose of this discussion, we define “the same” as
all the binary fractions being within some specified range. The
width, w, of that range can be any value, but we chose to focus
on w=0.1 and w=0.2. These were selected because the 68%
credible interval for Draco was ≈0.1, and for Ursa Minor,
Leo II, Carina, and Fornax, it was ≈0.2.

We can calculate the seven-dimensional joint probability that
all the dwarfs have a binary fraction within some width w,
centered on some binary fraction fg. (For example, the
probability that all the dwarfs have a binary fraction between
0.4 to 0.6 would be the case where fg=0.5 and w=0.2.)
First, we take the sum of the PPD for a single dSph over the
range -( )f w 2g to +( )f w 2g . This can be written as

å=
= -

+

( ) ( )P w f P f, ,d g
f f w

f w

d
2

2

g

g

which yields the probability that the binary fraction for the
dwarf, d, is within the specified range, w, centered on some
binary fraction, fg. Since we have normalized Pd( f ) such that
the sum over all f is equal to 1.0, this term will always be<1.

To find the probability that the binary fraction is within the
range w centered on fg for all the dwarfs, we need only take the
product of the sums over over d. Assuming the PPDs are
independent, this is given by
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where d is the set of dwarfs, d={Draco, Ursa Minor, Leo II,
Carina, Fornax, Sculptor, Sextans}, and Pd( f ) is the PPD
corresponding to that dwarf. We plot this probability as a
function of fg in Figure 12, with w=0.1 occupying the left two
panels and w=0.2 in the right two panels. Since our posterior
for Fornax did not agree with the previously published value
(Minor 2013), we do this for the sample of seven dwarfs (top
two panels), and for a sub-sample that excludes Fornax (the
bottom two panels). Due to the formulation of Equation (14),

there are only values of ( )P w f, g in the range of 0.05� fg�
0.95 for w=0.1, and in the range of 0.1�fg�0.9 for
w=0.2. (For example, if we selected fg=0 and w=0.1, then
the lower limit on the sum in Equation (14) would be
f=−0.05, which is not a physically possible value for the
binary fraction.)
The foremost feature of Figure 12 is the extremely small

probabilities along the y-axes, which range from 10−9 to 10−5.
These values imply that it is unlikely for the binary fraction to
be “the same” (i.e., within a 20% range) for the dSphs
considered here. This concept will be given additional attention
later in this section when we introduce another form of the
probability equation.
The maximum probability for the seven-galaxy sample

occurs at fg=0.57 for w=0.1 and fg=0.58 for w=0.2.
This means that if these dSphs have binary fractions within 0.1
(0.2) of each other, this is most likely to occur in the range
0.52�f�0.62 (0.48�f�0.68). For the six-galaxy sample,
the maximum probability occurs at fg=0.53 ( fg=0.54) for
w=0.1 (w=0.2). This means that if these dSphs have binary
fractions within a range of 0.1 (0.2), then it is most likely to
occur when 0.48�f�0.58 (0.44�f�0.64).
The range of binary fractions for the sample of seven

galaxies spans higher values than the sample of six galaxies
because our analysis finds a large binary fraction for Fornax.
As a result, Fornax imposes a lower limit on fg. When Fornax is
removed, then fg can shift toward lower values, but is still
limited by Ursa Minor. On the other end, Carina and Leo II
impose an upper limit on fg.
The sample excluding Fornax has higher—though still very

small—probabilities of the binary fraction being the same, as
can be seen by the y-axis labels in Figure 12. This is once again
because our analysis finds a large binary fraction for Fornax.
The probability of Fornax having f<0.6 is only 1%, and when
such small numbers get multiplied through Equation (14), the
result is very small probabilities. These probabilities are about
two orders of magnitude smaller than the probabilities
that exclude Fornax. To summarize, the inclusion of Fornax
(1) pulls fg toward higher values, and (2) decreases the
probability that f could be the same for all dwarfs. Regardless
of whether or not Fornax is included, the probability that the

Figure 10. Relative probability of a model fitting the data. Model parameters are indicated above each bar. Bars are normalized so that the sum is equal to 1. Solid
lines compare the relative probabilities of the PPDs over all values of f (0�f�1), and dashed lines are for the values of f within the 68% credible intervals (listed
above each bar). The left panel is Draco, and the right panel is Ursa Minor.
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binary fraction for all the dwarfs is “the same” in these intervals
is extremely small.

We now turn to a new question: How large must w be for the
probability of f being “the same” to become appreciable? We
tackle this by summing ( )P w f, g over all fg and exploring a
continuous choice of w. The probability that all the dwarfs have
a binary fraction within some range, w, centered on any value

of fg can be expressed as
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The last product term is subtracted to prevent some
probabilities from being counted more than once.

Table 6
Quantities Used to Derive amax in Seven dSphs

Galaxy vsys
a σb Source of Datac I0

d

(km s−1) (km s−1) ( -
L pc 3)

Draco −292.3±0.4 9.0±0.3 Walker et al. (2015) 0.008
Ursa Minor −246.9±0.4 8.0±0.3 Table 2 0.006
Leo II 78.5±0.6 7.4±0.4 Spencer et al. (2017a) 0.029
Carina 223.0±0.3 6.4±0.3 Walker et al. (2009a) 0.006
Fornax 54.9±0.2 11.8±0.2 Walker et al. (2009a) 0.018
Sculptor 111.3±0.2 8.4±0.1 Walker et al. (2009a) 0.055
Sextans 224.0±0.4 8.2±0.4 Walker et al. (2009a) 0.002

Notes.
a Systemic velocity.
b Velocity dispersion.
c Source for velocity data that we used to determine the systemic velocity and velocity dispersion.
d Central luminosity density from Mateo (1998).

Table 7
Binary Fractions for Seven dSphs

Galaxy f fref Reference

Draco -
+0.50 0.04

0.05 L L
Ursa Minor -

+0.78 0.09
0.08 L L

Leo II -
+0.36 0.08

0.07
-
+0.33 0.09

0.12 Spencer et al. (2017b)
Carina -

+0.20 0.13
0.09

-
+0.14 0.05

0.28 Minor (2013)
Fornax -

+0.87 0.09
0.12

-
+0.44 0.12

0.26 Minor (2013)
Sculptor -

+0.58 0.17
0.15

-
+0.59 0.16

0.24 Minor (2013)
Sextans -

+0.71 0.14
0.15

-
+0.69 0.23

0.19 Minor (2013)

Figure 11. Top: PPDs for seven dwarfs using a normal mass ratio distribution
and a log-normal period distribution centered on m = 4.8Plog . Bottom:
cumulative distributions of the posterior.

Figure 12. Probability that the binary fraction for all galaxies exists within a
finite range, w, that is centered on fg, as described by Equation (14). The left
two panels use w=0.1, and the right two use w=0.2. The top two panels
include seven galaxies, and the bottom two include six galaxies. The total
probability that binary fraction exists within some width w regardless of fg is
printed in the top left corner of each panel, and is defined in Equation (15). This
figure was made under the assumptions that the period and mass ratio
distributions take the forms described in Duquennoy & Mayor (1991).
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Figure 13 plots this probability as a function of w. The set of
seven galaxies is shown by the black solid line, and the set of
six galaxies is shown by the blue dashed line. The probability
of the six-galaxy sample becomes greater than 1% around
w=0.3. For the seven-galaxy sample, this transition occurs
around w=0.4. This means that the binary fractions of the
galaxies do not all begin to occur within some specified range
until that range has a width of at least 0.3–0.4 in f. This is larger
than the credible intervals of most of the PPDs (as in Table 7),
so an alternative interpretation is that the binary fractions
should no longer be considered “the same” when w is this
large. Rather, the binary fractions are spread over some range
of values with a width of at least 0.3–0.4.

We produced variations of Figure 13 for different period and
mass ratio distributions and found that the Fischer & Marcy
(1992) distribution could bring this turning point down to as
low as w=0.2. Regardless of the inclusion of Fornax or
binary parameter distributions, there is a <1% chance that the
binary fractions for the considered dSphs all exist within some
range of f with width 0.2. Ultimately, we find that it is highly
unlikely that the binary fraction is constant across dSphs. The
only other way in which the binary fraction could be the same
is if the period distributions varied among the dwarfs, with
dwarfs like Leo II and Carina have longer average periods and
dwarfs like Sextans, Ursa Minor, and Fornax having shorter
mean periods.

Assuming that binary fraction does vary among dwarfs and that
the binary orbital parameters are constant, we examined whether
binary fraction is dependent on any galactic properties. The
properties we considered were distance from the Milky Way
(McConnachie 2012), absolute magnitude (McConnachie 2012),
surface brightness (Mateo 1998), luminosity density (Mateo 1998),
mass density (Mateo 1998), total mass within half-light radius
(Walker et al. 2009b), velocity dispersion (McConnachie 2012),
half-light radius (Mateo 1998), ellipticity (McConnachie 2012),
mean metallicity (Kirby et al. 2011), time to form 50% of
the stellar mass (Weisz et al. 2014), and time to form 95% of the
stellar mass (Weisz et al. 2014). Table 8 lists the values for the
properties for the eight classical dSphs. We compare these
properties to the binary fractions of Draco, Ursa Minor, and Leo II

that were calculated in this chapter, and to the binary fractions of
Carina, Fornax, Sculptor, and Sextans in Minor (2013).
Figure 14 shows all of these parameters plotted against

binary fraction. Most cases yield scatterplots. The three
parameters that exhibited the most promising correlations with
binary fraction are velocity dispersion (bottom left panel), time
since forming 50% of the stellar mass (bottom middle panel),
and time since forming 95% of the stellar mass (bottom right
panel). The loose trends that we find are that binary fraction
roughly increases with velocity dispersion, and that galaxies
that formed more of their stars early on have higher binary
fractions than those with a more extended star formation
history. The trend with velocity dispersion has increased
significance if Fornax is included, while the trends with star
formation history have decreased significance if Fornax is
included.
Recall that one of the underlying purposes of this research is

to see if binaries can alter our view of ultra-faints. The
implication of the first trend is that ultra-faints would have low
binary fractions. As a consequence, their velocity dispersions
would have very minor inflation due to binaries. This seems
unlikely given the cases of Bootes I (Koposov et al. 2011) and
Segue 1 (Simon et al. 2011), which did have 0.5–2 km s−1

velocity dispersion corrections due to binaries.
Marks & Kroupa (2011) used simulations to predict that the

binary fraction should be larger for lower star formation rates.
We use the time to form 50% or 95% of the stellar mass as a
proxy for star formation rate and find the opposite—binary
fraction is higher for fast star formation rates. This discrepancy
could be caused by possible invalid assumptions in the models
by Marks & Kroupa (2011; i.e., that all stars start as members
of binary systems), or small number statistics and large error
bars on our findings.
It has been suggested that a more densely populated star-

forming region should have a larger binary fraction (Kounkel
et al. 2016). We do not see this reflected in the mass density or
luminosity density of the dwarfs, but this is likely because the
properties we have access to do not translate to the density of
progenitor star-forming regions. Overall, the quality and
quantity of the data are not sufficient to discern any meaningful
trends with binary fraction.

5. Conclusions

Velocity data for Draco and Ursa Minor have been
accumulating since the early 1980s (O95; A95; K02; K03;
W04; K10; W15). We identified, collected, and combined the
available data to produce the largest multi-epoch data set of
radial velocities in both dwarfs. While many of these data sets
have been used in previous studies to achieve a myriad of
kinematic results, all of them required additional culling before
we could use them for our purposes. The most involved process
was for the W15 and Table 2 data, which entailed a maximum
likelihood estimation of the velocity dispersion and systemic
velocity that could be used for membership identification.
This extensive velocity data made it possible for us to

explore the binary populations in Draco and Ursa Minor. We
generated MC simulations of the data and used a Bayesian
technique that was developed in Paper I and improved upon in
this work to determine the binary fractions in Draco and Ursa
Minor. By testing six different binary orbital parameter
combinations for mass ratio and period, we conclude that the
binary fraction for Draco is between -

+0.29 0.03
0.03 and -

+0.69 0.06
0.07,

Figure 13. Probability that the binary fractions of dSphs exist within a
specified range with width w. The solid black line includes seven galaxies;
the dashed blue line includes six galaxies. The dwarfs do not occupy the
same range of f until that range is widened to about 0.3 or 0.4. This figure was
made under the assumptions that the period and mass ratio distributions take
the forms described in Duquennoy & Mayor (1991).
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Table 8
Properties of Classical dSphs

Dwarf Distancea Mv
a Σ0

a Ellipticitya rhalf
a Lv

b I0
b σa ( )M rdyn half

a ρ0
b Mean [Fe/H]a

(kpc) (mag) (mag arcsec−2) (pc) L106 ( -
L pc 3) km s−1

M106 ( -
M pc 3) (dex)

Draco 76 −8.8±0.3 25.0±0.2 0.31±0.02 221±19 0.26 0.008 9.1±1.2 11 0.46 −1.93±0.01
Ursa Minor 78 −8.8±0.5 26.0±0.5 0.56±0.05 181±27 0.29 0.006 9.5±1.2 9.5 0.35 −2.13±0.01
Leo II 236 −9.8±0.3 24.2±0.3 0.13±0.05 176±42 0.58 0.029 7.4±0.4 4.6 0.29 −1.62±0.01
Leo I 258 −12.0±0.3 22.6±0.3 0.21±0.03 251±27 4.79 0.092 9.2±1.4 12 0.28 −1.43±0.01
Carina 107 −9.1±0.5 25.5±0.5 0.33±0.05 250±39 0.43 0.006 6.6±1.2 6.3 0.17 −1.72±0.01
Fornax 149 −13.4±0.3 23.3±0.3 0.30±0.01 710±77 15.5 0.018 11.7±0.9 56 0.086 −0.99±0.01
Sculptor 86 −11.1±0.5 23.5±0.5 0.32±0.03 283±45 2.15 0.055 9.2±1.4 14 0.60 −1.68±0.01
Sextans 89 −9.3±0.5 27.1±0.5 0.35±0.05 695±44 0.5 0.002 7.9±1.2 25 0.065 −1.93±0.01

Notes.
a Values taken from McConnachie (2012).
b Values taken from Mateo (1998).
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and the binary fraction for Ursa Minor is between -
+0.45 0.05

0.05 and

-
+0.96 0.06

0.03. The most commonly used period and mass ratio
distributions come from DM91, which yielded binary fractions
of -

+0.50 0.06
0.04 and -

+0.78 0.09
0.08 in Draco and Ursa Minor,

respectively.
Changes to the shape of the period distribution had the

largest effect on the posterior of the binary fraction, causing it
to vary by as much as 30%–50%. The values we tested for the
period distribution were inspired by observations of F–M type
stars (DM91; FM92) and simulations of stars in dwarf irregular
galaxies (MK11). The mass ratio distributions that we tested
only produced binary fractions that varied by 4%–11%. Future
work toward refining these distributions should focus on the
period distribution, because it plays a larger role in determining
the binary fraction. We found that the DM91 mass ratio
distribution always did a better job of reproducing the data than

the R10 distribution for a given period distribution. Period
distributions peaking at m = 4.8Plog or m = 5.8Plog were
always preferred over a distribution peaking at shorter periods
(m = 3.5Plog ).
Finally, we explored whether binary fraction is constant

among dSphs by expanding our sample of two dwarfs to
include Leo II, Carina, Fornax, Sculptor, and Sextans. We
calculated the binary fraction for the additional dwarfs in the
same way as was done for Draco and Ursa Minor, using
velocity data from Paper I for Leo II and from Walker et al.
(2009a) for Carina, Fornax, Sculptor, and Sextans. The
probability that the binary fraction is constant (i.e., exists
within a range of f with width of 0.2 for all dwarfs) is <1%,
regardless of the inclusion of Fornax or the combination of
period and mass ratio distributions. If binary fraction was a
constant value, then the period distributions for each dwarf

Figure 14. Binary fraction, f, is plotted against other properties of the galaxies. Top row: distance, absolute V-band magnitude, V-band central surface brightness.
Second row: ellipticity, total mass within half-light radius, half-light radius. Third row: central mass density, central luminosity density, mean metallicity. Bottom row:
velocity dispersion, time to form 50% of stars, time to form 95% of stars.
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would need to vary. While this cannot be ruled out, it is certain
that the binary populations within these dwarfs are different.
That is to say, at least one property—be it binary fraction,
period distribution, or something else—is not constant over all
dwarfs.

Because we found that binary fraction varied given a fixed
period distribution, we considered how binary fraction may
vary with a variety of dSph properties. The strongest trends we
found were that binary fraction was larger for dSphs that
formed 50% or 95% of their stars faster and for dwarfs with
larger velocity dispersions. Incorporating additional data for
Carina, Fornax, Sculptor, and Sextans from other sources
would allow for a better determination of their binary fractions
and should yield cleaner trends with binary fraction if such
trends exist.

The Hectochelle observations reported here were obtained at
the MMT Observatory, a joint facility of the University of
Arizona and the Smithsonian Institution.
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