108 research outputs found

    Exploring Adaptive Management for Greater Sage Grouse in Northern Montana in the Face of Climate Change

    Get PDF
    A collaboration has begun in Montana among several state and federal agencies and non-governmental organizations interested in the management of greater sage grouse (Centrocercus urophasianus) in a > 5,000,000-ac (> 20,234-ha) landscape including the Charles M. Russell National Wildlife Refuge. The first step was conducting personal interviews with field biologists and managers in the general area to assess what management actions they are making. Using this information, we conducted an on-line survey to further identify those actions and how they are made. Finally, almost 40 managers and scientists met to discuss whether an adaptive management approach might be useful to gain an understanding of the interaction among habitats and management actions and how this will be affected by annual weather and climate patterns. A conceptual model of how these factors affect the life cycle of grouse has been drafted, and we are gathering comments on it. The intent is for that to be used as an ecological response model for assessing the effects of possible climate change scenarios. Future work will entail: (1) further delineation of management actions and the social networks associated with them, (2) building and evaluating a working model using rapid prototype methods, (3) conducting futures analyses of associated landscapes, (4) continuing to foster collaborative effort, and (5) working one-onone with managers to evaluate model and adaptive management applicability using such tools as LCMAP (Landscape Conservation Management and Analysis Portal)

    Dissolved noble gases and stable isotopes as tracers of preferential fluid flow along faults in the Lower Rhine Embayment, Germany

    Get PDF
    Groundwater in shallow unconsolidated sedimentary aquifers close to the Bornheim fault in the Lower Rhine Embayment (LRE), Germany, has relatively low δ2H and δ18O values in comparison to regional modern groundwater recharge, and 4He concentrations up to 1.7 × 10−4 cm3 (STP) g–1 ± 2.2 % which is approximately four orders of magnitude higher than expected due to solubility equilibrium with the atmosphere. Groundwater age dating based on estimated in situ production and terrigenic flux of helium provides a groundwater residence time of ∼107 years. Although fluid exchange between the deep basal aquifer system and the upper aquifer layers is generally impeded by confining clay layers and lignite, this study’s geochemical data suggest, for the first time, that deep circulating fluids penetrate shallow aquifers in the locality of fault zones, implying  that sub-vertical fluid flow occurs along faults in the LRE. However, large hydraulic-head gradients observed across many faults suggest that they act as barriers to lateral groundwater flow. Therefore, the geochemical data reported here also substantiate a conduit-barrier model of fault-zone hydrogeology in unconsolidated sedimentary deposits, as well as corroborating the concept that faults in unconsolidated aquifer systems can act as loci for hydraulic connectivity between deep and shallow aquifers. The implications of fluid flow along faults in sedimentary basins worldwide are far reaching and of particular concern for carbon capture and storage (CCS) programmes, impacts of deep shale gas recovery for shallow groundwater aquifers, and nuclear waste storage sites where fault zones could act as potential leakage pathways for hazardous fluids

    Retardation of arsenic transport through a Pleistocene aquifer

    Get PDF
    Groundwater drawn daily from shallow alluvial sands by millions of wells over large areas of south and southeast Asia exposes an estimated population of over a hundred million people to toxic levels of arsenic1. Holocene aquifers are the source of widespread arsenic poisoning across the region2, 3. In contrast, Pleistocene sands deposited in this region more than 12,000 years ago mostly do not host groundwater with high levels of arsenic. Pleistocene aquifers are increasingly used as a safe source of drinking water4 and it is therefore important to understand under what conditions low levels of arsenic can be maintained. Here we reconstruct the initial phase of contamination of a Pleistocene aquifer near Hanoi, Vietnam. We demonstrate that changes in groundwater flow conditions and the redox state of the aquifer sands induced by groundwater pumping caused the lateral intrusion of arsenic contamination more than 120 metres from a Holocene aquifer into a previously uncontaminated Pleistocene aquifer. We also find that arsenic adsorbs onto the aquifer sands and that there is a 16–20-fold retardation in the extent of the contamination relative to the reconstructed lateral movement of groundwater over the same period. Our findings suggest that arsenic contamination of Pleistocene aquifers in south and southeast Asia as a consequence of increasing levels of groundwater pumping may have been delayed by the retardation of arsenic transport.National Science Foundation (U.S.) (NSF grant EAR09-11557)Swiss Agency for Development and Cooperation (Grant NAFOSTED 105-09-59-09 to CETASD, the Centre for Environmental Technology and Sustainable Development (Vietnam))National Institute of Environmental Health Sciences (NIEHS grant P42 ES010349)National Institute of Environmental Health Sciences (NIEHS grant P42 ES016454

    Growth Response of Drought-Stressed Pinus sylvestris Seedlings to Single- and Multi-Species Inoculation with Ectomycorrhizal Fungi

    Get PDF
    Many trees species form symbiotic associations with ectomycorrhizal (ECM) fungi, which improve nutrient and water acquisition of their host. Until now it is unclear whether the species richness of ECM fungi is beneficial for tree seedling performance, be it during moist conditions or drought. We performed a pot experiment using Pinus sylvestris seedlings inoculated with four selected ECM fungi (Cenococcum geophilum, Paxillus involutus, Rhizopogon roseolus and Suillus granulatus) to investigate (i) whether these four ECM fungi, in monoculture or in species mixtures, affect growth of P. sylvestris seedlings, and (ii) whether this effect can be attributed to species number per se or to species identity. Two different watering regimes (moist vs. dry) were applied to examine the context-dependency of the results. Additionally, we assessed the activity of eight extracellular enzymes in the root tips. Shoot growth was enhanced in the presence of S. granulatus, but not by any other ECM fungal species. The positive effect of S. granulatus on shoot growth was more pronounced under moist (threefold increase) than under dry conditions (twofold increase), indicating that the investigated ECM fungi did not provide additional support during drought stress. The activity of secreted extracellular enzymes was higher in S. granulatus than in any other species. In conclusion, our findings suggest that ECM fungal species composition may affect seedling performance in terms of aboveground biomass

    Idiopathic sclerosing mesenteritis in paediatrics: Report of a successfully treated case and a review of literature

    Get PDF
    A 6 year old female with symptoms of small bowel obstruction underwent an exploratory laparotomy which revealed widespread evidence of inflammatory fibrotic adhesions involving the jejunal mesentery. In view of persistent growth failure, chronic anaemia, elevated acute phase reactants and imaging evidence of a diffuse progressive inflammatory process, the child was treated with corticosteroids and methotrexate with complete response. The literature on juvenile idiopathic sclerosing mesenteritis has been reviewed

    Prospective Monitoring Reveals Dynamic Levels of T Cell Immunity to Mycobacterium Tuberculosis in HIV Infected Individuals

    Get PDF
    Monitoring of latent Mycobacterium tuberculosis infection may prevent disease. We tested an ESAT-6 and CFP-10-specific IFN-γ Elispot assay (RD1-Elispot) on 163 HIV-infected individuals living in a TB-endemic setting. An RD1-Elispot was performed every 3 months for a period of 3–21 months. 62% of RD1-Elispot negative individuals were positive by cultured Elispot. Fluctuations in T cell response were observed with rates of change ranging from −150 to +153 spot-forming cells (SFC)/200,000 PBMC in a 3-month period. To validate these responses we used an RD1-specific real time quantitative PCR assay for monokine-induced by IFN-γ (MIG) and IFN-γ inducible protein-10 (IP10) (MIG: r = 0.6527, p = 0.0114; IP-10: r = 0.6967, p = 0.0056; IP-10+MIG: r = 0.7055, p = 0.0048). During follow-up 30 individuals were placed on ARVs and 4 progressed to active TB. Fluctuations in SFC did not correlate with CD4 count, viral load, treatment initiation, or progression to active TB. The RD1-Elispot appears to have limited value in this setting

    Towards a spatial critique of ideology: architecture as a test

    Get PDF
    The article presents the outline for the theory of ideological space. The ideological properties of space are reconsidered by the juxtaposition of Lefebvre’s and Bourdieu’s theories. The resultant reconciliation points towards the notion of spatial critique of ideology as well as the possibility of employing ideology for critique of space. The notion of a test (as characterized by Boltanski) is introduced to show the importance of capabilities of actors and objects in the process of critique. The article emphasizes the exceptional significance of architecture for the construction of critical positions. The architecture is described as a form of a test. In so doing, the architecture is characterized as one of the essential elements of possible social emancipation. In effect, both the social responsibilities of the architecture and its critical role are underscored
    corecore