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    Abstract  

  Ectomycorrhizal (ECM) fungi form association with relatively small number 
of plants that dominate boreal, temperate, Mediterranean, and some 
subtropical forest ecosystems. These plant species have been able to 
acquire metabolic capabilities through symbioses with ECM fungi, thus 
improving their mineral nutrition and growth in several ecological niches. 
Mycorrhizal fungi can also play several other important ecological roles, 
including the protection of plants from abiotic and biotic stresses. Several 
“targeted” metagenomic projects have been carried out, or are now in 
progress, in order to identify the fungal communities in soil, including 
ECM fungi, which are present in various habitats (e.g., forest and truffl e-
ground soils, etc.). ECM fungi, which are important both because of their 
economic value as edible fungi (i.e., truffl es, boletes) and because of their 
application in reforestation projects, are the subject of this chapter, in 
which the recent advances in ECM fungal communities are reviewed, 
focusing mainly on the applicative aspects related to the use of these fungi.  
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        Introduction 

 Mycorrhizae are widespread symbiotic interac-
tions between soil fungi and the roots of almost 
all land plants, including forest trees, grasses, and 
many crops (Smith and Read  2008 ). It has been 
estimated that about 90 % of terrestrial plant spe-
cies undergo an improvement in mineral nutrient 
uptake, thanks to root symbiosis with mycorrhizal 
fungi (Brundrett  2009 ), which, in turn, provide the 
fungus with carbon compounds (i.e., sugars). Several 
mycorrhizal associations exist, and these are 
identifi ed primarily on the basis of the taxonomic 
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identity of the hosts and the structural features of 
the symbiotic interfaces (Smith and Read  2008 ). 
According to the ability of the mycorrhizal fun-
gus to penetrate the root cells, mycorrhizae can 
be divided into two main types: endomycorrhizae 
and ectomycorrhizae (Balestrini et al.  2012 ; 
Perotto et al.  2013 ). 

 In ECM symbiosis, which is the subject of this 
review, the fungus forms a hyphal sheath, called 
mantle, which is made of aggregated hyphae that 
surround the root surface, and the Hartig net, 
which is formed by the hyphae that penetrate 
between the root cells (Balestrini et al.  2012 ; 
Fig.  16.1 ). The mantle is thought to be responsi-
ble for the mineral nutrition and water uptake of 
the symbiotic tissues, while the Hartig net is con-
sidered the site in which metabolites are 
exchanged. A preliminary confi rmation of the 
functional diversity of these two fungal compart-
ments can be found in the study on  Amanita mus-
caria  ECMs by Nehls et al. ( 2001 ) in which 
the separation of the mantle from the ECM root, 
using only tweezers, underlined a differential 
expression for two hexose-regulated fungal 
genes. A specifi city in the mantle and Hartig net 
transcriptomic profi les, which refl ects a functional 
specifi city, has recently been revealed by Hacquard 
et al. ( 2013 ) through a laser microdissection 
approach, in which the two fungal compartments 

in truffl e ECM were dissected, in combination 
with microarray gene expression analysis.

   ECM fungi occur all over the world, and their 
host range includes most angiosperm and gym-
nosperm trees, as well as economically important 
timber-producing tree species. They play an 
important ecological role in woodland and forest 
communities in boreal, temperate, Mediterranean, 
and some subtropical forest ecosystems (Tedersoo 
et al.  2010a ) that are dominated by hundreds of 
ECM fungal species (i.e.,  Basidio - and 
 Ascomycetes ), which form symbiotic associa-
tions with the lateral roots of trees and shrubs 
(Bonfante  2010 ). ECM symbiosis involves a rela-
tively small number of plants, i.e., those belong-
ing to Betulaceae, Dipterocarpaceae, Fagaceae, 
Nothofagaceae, Myrtaceae (e.g.,  Eucalyptus ), 
Pinaceae, Salicaceae, and some genera of shrubs 
(e.g., Cistaceae), which are assisted by ECM 
fungi in the nutrition and protection against root 
diseases (Smith and Read  2008 ). As far as the 
fungal part is concerned, the majority of ECM 
fungi belong to  Basidiomycetes , which can form 
macroscopic epigeous fruiting bodies that often 
grow next to tree trunks in woodlands, such as 
 Boletus edulis  and  Cantharellus cibarius , while 
some others belong to  Ascomycetes  and form 
hypogeous fruiting bodies, such as truffl es 
(Girlanda et al.  2007 ). 

  Fig. 16.1    ( a )  Corylus avellana / Tuber melanosporum  
ectomycorrhizae with the typical clavate aspect and the 
presence of external mycelium. ( b ) Paraffi n oblique trans-
verse section of a  C. avellana / T. melanosporum  ectomy-

corrhiza showing the mantle (m), which consists of 
several layers of hyphae, and the Hartig net   proliferation 
(Hn and arrows).  cc  central cylinder. Bar corresponds to 
25 μm       
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 ECM fungi in the soil are highly competitive 
for nutrient acquisition (Bücking et al.  2012  and 
reference therein), and their colonization allows 
plant access to N forms that are not so easily 
available to non-mycorrhizal plants (Hobbie and 
Hogberg  2012  and reference therein). In line with 
these observations, Averill et al. ( 2014 ) and the 
relative commentary by Bradford ( 2014 ) have 
suggested that the presence of greater stores of 
organic matter in forest soils dominated by ECM 
fungi, than in those dominated by arbuscular 
mycorrhizal (AM) fungi, could be due to a 
reduced nitrogen availability for the free-living 
microbes that use organic matter. Interestingly, 
when a tripartite interaction is present, as in the 
 Alnus  host system (N-fi xing bacteria, ECM fungi, 
 Alnus  roots), the ECM fungal activity seems to be 
shifted toward a greater capacity for organic P 
acquisition (Walker et al.  2013 ). A study about 
the impact of an ECM fungus ( Hebeloma cylin-
drosporum ) on the potassium (K + ) nutrition of its 
host plant ( Pinus pinaster ) has recently been per-
formed, and the involvement of a fungal K +  trans-
porter has been investigated (Garcia et al.  2014 ). 
The results have shown that the K +  nutrition of 
mycorrhizal pine plants was signifi cantly 
improved under potassium-limiting conditions 
(Garcia et al.  2014 ). 

 A positive correlation between ECM symbio-
sis and plant performance in drought conditions 
has been reported (Morte et al.  2001 ; Dunabeitia 
et al.  2004 ; Alvarez et al.  2009 ), although plant 
response to drought can vary depending on the 
ECM fungal species (Dosskey et al.  1991 ; 
Kennedy and Peay  2007 ). More recently, a pot 
experiment, using  Pinus sylvestris  seedlings 
inoculated with several ECM fungi ( Cenococcum 
geophilum ,  Paxillus involutus ,  Rhizopogon rose-
olus , and  Suillus granulatus ), has shown that 
only  S. granulatus  has a positive effect on shoot 
growth. Two different watering regimes (moist 
 versus  dry) were considered, and it was shown 
that  S. granulatus  effect on shoot growth was 
more pronounced under moist conditions (three-
fold increase) than under dry conditions (twofold 
increase), thus suggesting that the considered ECM 
fungus did not provide any additional support 
during drought stress (Kipfer et al.  2012 ). Danielsen 
and Polle ( 2014 ) have instead investigated the 

nutrient status and the physiological responses to 
drought of young poplar trees in the presence/
absence of the ECM fungus  P. involutus , and they 
have been shown that root tips from ECM plants 
have a higher vitality than those from non-mycor-
rhizal plants. Since this effect is evident in both 
the colonized and non-colonized tips of ECM 
plants, the authors have suggested that it could be 
due to a general improved water supply to the 
roots of the host plants. 

 Numerous  in situ   13 CO 2  pulse-labeling experi-
ments have been conducted on annual crops or 
grasslands to demonstrate a rapid carbon fl ux 
pathway from the host to the roots and from the 
roots to the rhizosphere (Robin et al.  1990 ; 
Nguyen et al.  1999 ; Johnson et al.  2002 ; Leake 
et al.  2006 ). The studies on carbon allocation in 
trees using pulse labeling have usually been per-
formed in microcosms or mesocosms (Norton 
et al.  1990 ; Ek  1997 ; Simard et al.  1997 ), and 
only a few studies have been conducted in situ 
with adult trees but have never considered the 
fruiting bodies of the associated fungi (Högberg 
et al.  2008 ; Plain et al.  2009 ; Subke et al.  2009 ; 
Epron et al.  2011 ). Recently, Le Tacon et al. 
( 2013 ) have elegantly assessed the allocation of 
carbon by the host to  Tuber melanosporum  
mycorrhizae and ascocarps via an  in situ   13 CO 2  
pulse-labeling experiment performed on a 
20-year-old hazel tree in a truffl e orchard estab-
lished in the northeast of France. Almost all of 
the carbon allocated to the truffl e ascocarps came 
from the host; thus, the hypothesis that it was 
mainly supplied via saprotrophic pathways was 
excluded. The development of truffl es requires 
that carbon is stored in the trunk or roots of the 
host, and the process takes several weeks/months 
unlike what happens in an ectomycorrhizal mem-
ber of  Basidiomycotina  producing fruiting bodies 
over a number of days (Teramoto et al.  2012 ). 
This result, as expected, demonstrates that the 
processes involved in carbon acquisition and 
ascocarp development are different from those of 
basidiocarps, since  Tuber  ascocarps take at least 
6 months to grow between the production of the 
primordia and full ascocarp development, unlike 
 Basidiomycota  sporocarps, which develop 
over a number of days directly from diploid 
mycorrhizae. 
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 ECM symbiosis can therefore be considered a 
crucial component in nutrient cycling in sustain-
able forest ecosystem, and the current genome 
sequencing projects on ECM fungi are providing 
useful information to understand the functional 
and ecological roles for these fungi (Martin et al. 
 2008 ,  2010 ; Martin and Nehls  2009 ; Plett and 
Martin  2011 ; Martin and Bonito  2012 ; Balestrini 
et al.  2013 ; Marmeisse et al.  2013 ). 

 ECM fungi, which are therefore important for 
both their economic value (i.e., truffl es, boletes) 
and their use in reforestation projects, are the 
subject of this chapter, in which the recent 
advances in ECM fungal communities are 
reviewed, focusing mainly on the applicative 
aspects related to the use of these fungi.  

    Research on ECM Fungi: 
From the Past to the Present 

 The study of ECM fungal diversity initially 
focused on the screening and molecular identifi -
cation of fruiting bodies and, only later, on ECM 
tips, usually after sorting these in morphotypes 
(Horton and Bruns  2001 ; Mello et al.  2006a ). As 
each ECM species is specialized in exploiting 
specifi c resources of the soil ecosystem, investi-
gations have focused on the spatial distribution of 
the extraradical mycelium. Tracking the distribu-
tion of a given ECM fungus is considered diffi -
cult, since fruiting bodies do not refl ect the 
distribution of ground networks (Dahlberg  2001 ). 
 H. cylindrosporum  was the fi rst ECM fungus to 
be detected in soil (Guidot et al.  2002 ), and its 
presence was revealed within 50 cm from the 
fruiting bodies. Thanks to the use of the β-tubulin 
gene as a marker, Zampieri et al. ( 2010 ) were 
able to show that  T. magnatum  mycelium is more 
widespread than could be inferred from the dis-
tribution of its fruiting bodies and ECM and were 
able to identify a new haplotype that had never 
been described before from fruiting body mate-
rial. The application of the denaturing gradient 
gel electrophoresis (DGGE) technique made it 
possible to discover that  T. melanosporum  is the 
dominant fungus in an area characterized by 

scanty vegetation, known as brûlé, which is asso-
ciated to this fungus, and that  Basidiomycota  
ECM fungi decrease within the brûlé, thus indi-
cating a competitive effect of  T. melanosporum  
on other ECM fungi (Napoli et al.  2010 ). 

 Since each individual within a species has its 
own functional traits, the next step toward a bet-
ter understanding of the role of biodiversity in 
ecosystem functioning will need to consider the 
intraspecifi c diversity of mycorrhizal plants and 
fungi (Johnson et al.  2012 ). 

 The possibility of studying (micro)organisms 
directly in the fi eld (metagenomics or environ-
mental genomics, Chivian et al.  2008 ) thanks to 
the introduction of high-throughput sequencing 
techniques (i.e., 454 pyrosequencing) has given a 
strong impulse to the development of projects 
devoted to the study of fungal communities in 
different environments, including soils. The fi rst 
studies on fungal diversity, which used a metage-
nomic approach in combination with high- 
throughput technology, appeared in 2009 (Buée 
et al.  2009 ; Jumpponen and Jones  2009 ). Buée 
and colleagues investigated fungal diversity in 
six different forest soils from a temperate French 
site using tag-encoded 454 pyrosequencing of the 
ITS-1 (nuclear ribosomal internal transcribed 
spacer-1), while Jumpponen and Jones ( 2009 ) 
studied the fungal communities in leaves of 
 Quercus macrocarpa  of trees located inside and 
outside a small urban center using the same 
molecular target. These authors have demon-
strated that 454 pyrosequencing can be used suc-
cessfully to study fungal communities in forest 
soil and phyllosphere. Starting from these fi rst 
works, an approach based on 454 GS-FLX pyro-
sequencing has been widely used to investigate 
fungal communities in soils and has allowed new 
information to be provided on ECM fungal com-
munities in several biomes/ecosystems, e.g., 
Swedish spruce plantations (Wallander et al. 
 2010 ); tropical African forests (Tedersoo et al. 
 2010b ); truffl e grounds (Mello et al.  2011 ); trans-
genic poplar plantations (soils and roots; 
Danielsen et al.  2012 ); ECM herb  Bistorta vivip-
ara  roots on the Arctic archipelago of Svalbard 
(Blaalid et al.  2012 ,  2014 ); an urban landscape 
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(Lothamer et al.  2013 ); a boreal forest (Clemmensen 
et al.  2013 ); boreal and tropical forests (McGuire 
et al.  2013 ); truffl e grounds, a Mediterranean 
agro-silvo-pastoral system, serpentine substrates, 
and a contaminated industrial area (Orgiazzi 
et al.  2013 ); an oak-dominated forest in Japan 
(Toju et al.  2013 ); and three microsites (decayed 
wood, mineral soil adjacent to intact logs, control 
mineral soil) in mature spruce forests in British 
Columbia (Walker et al.  2014 ). 

 Global climate change is supposed to infl u-
ence soil fungal communities, including ECM 
fungal communities. It has already been demon-
strated that several ecological factors, distur-
bances (e.g., fi re; Kipfer et al.  2011 ), and 
management practices (e.g., nitrogen deposition; 
Peter et al.  2001 ) affect the composition of ECM 
fungal communities and can lead to a reduction 
in the number of ECM fungal species (Koide 
et al.  2011 ). Changes in ECM fungal communi-
ties have recently been investigated using 454 
pyrosequencing. Voříšková et al. ( 2014 ) have 
shown that seasonality and soil depth can infl u-
ence ECM fungal communities in a temperate 
oak forest soil. A decrease in ECM fungi abun-
dance has been verifi ed in buried soils in the 
Siberian tundra (Gittel et al.  2013 ), where the 
abiotic conditions (low temperature and anoxia) 
seem to favor an abundance of bacteria, faculta-
tive anaerobic decomposers of soil organic mat-
ter (SOM) such as  Actinobacteria , which increase 
compared to unburied soils. Hui et al. ( 2011 ) 
have observed, in a boreal coniferous forest site 
in Southern Finland, that a long-term exposition 
to Pb contamination can lead to a shift in the 
composition of the ECM community associated 
with the dominant pine ( P. sylvestris  L.), as well 
as an increase in the abundance of the OTUs 
(operation taxonomic units) assigned to the 
 Thelephora  genus and a decrease in the frequency 
of OTUs corresponding to  Pseudotomentella , 
 Suillus , and  Tylospora  in the contaminated zone 
(Hui et al.  2011 ). 

 However, although several factors infl uence 
the composition of an ECM community and spe-
cies richness of ECM fungi, the functional conse-
quences of these shifts on the aboveground 

communities (e.g., for tree performance), as well 
as for the soil ecosystems, still require further 
investigation (Kipfer et al.  2012 ). An extensive 
metabolic reprogramming during the colonization 
between  Laccaria bicolor  and its compatible host 
 Populus trichocarpa  has recently been demon-
strated. However, this extensive metabolic repro-
gramming is repressed in incompatible 
interactions where more defensive compounds 
are produced or retained (Tschaplinski et al. 
 2014 ). Moreover, Pena and Polle ( 2014 ) have 
demonstrated, using  15 N isotope enrichment, that 
ECM assemblages provide advantages for inor-
ganic N uptake mainly under environmental con-
straints with respect to unstressed plants, thus 
suggesting a stress activation of specifi c ECM 
taxa. 

 In addition to their ecological role, some ECM 
fungi such as  Tricholoma matsutake , the so- 
called pine mushroom, have great value as com-
mercial food. This mushroom is popular in Asia 
because of its aromatic odor and particular taste, 
as well as its high nutritional and medicinal value 
(Ohnuma et al.  2000 ; Kim et al.  2008 ; Ding et al. 
 2010 ). However, its annual production is limited, 
and several abiotic factors (e.g., rainfall and tem-
perature) can affect it; moreover, attempts to cul-
tivate it artifi cially have been unsuccessful. Kim 
and colleagues ( 2013 ) have investigated, through 
a 454 GS-FLX pyrosequencing platform, the fun-
gal communities in soil where fruiting bodies 
develop. Several zones have been considered 
(inside, beneath, and outside the fairy ring zone 
of  T. matsutake ), with the aim of obtaining infor-
mation on the fungal communities that could 
infl uence the development of the fruiting bodies. 
Mello et al. ( 2011 ) have used a similar approach 
to verify the fungal populations inside and out-
side the brûlé (burnt area), in which  T. melanos-
porum  fruiting bodies (the black truffl es) are 
usually collected. The results show that 
 Ascomycota , which was the most dominant phy-
lum in the investigated French truffl e ground, are 
more abundant inside than outside the brûlé, 
while  Basidiomycota  increase outside the brûlé 
in agreement with previous results reported by 
Napoli et al. ( 2010 ) using the DDGE technique.  
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    The Application of ECM Fungi 
to Field Projects 

 ECM fungi provide trees with several benefi ts, 
such as the enhanced ability to absorb water, 
phosphorus, and nitrogen and protection from 
soilborne root pathogens such as  Fusarium oxys-
porum . Evidence of the positive role of ECM 
 Pisolithus albus  in enhancing the growth of 
plants, such as  Acacia spirorbis  and  Eucalyptus 
globulus , has been observed by signifi cant 
increases in shoot and root biomass and mineral 
nutrition (P, K, and Ca), as well as a limited metal 
uptake, acting as a protective barrier, in nickel- 
rich ultramafi c topsoils in New Caledonia 
(Jourand et al.  2014 ). In the restoration of ultra-
mafi c ecosystems degraded by mining activities, 
it could be convenient to isolate indigenous and 
stress-adapted benefi cial ECM fungi in order to 
inoculate endemic plants (Jourand et al.  2014 ). 
ECM fungi have already been proposed for the 
ecological restoration of mine sites (in particular 
chromium and nickel mines) in Australia by 
Reddell et al. ( 1999 ) and in New Caledonia by 
Perrier et al. ( 2006 ) as well as in the post-mining 
of bauxite in Brazil by Khosla and Reddy ( 2008 ). 
ECM fungi are also expected to play a key role in 
forest regeneration after major disturbance events 
such as stand-replacing forest fi res. Kipfer et al. 
( 2010 ) investigated the heat tolerance of ECM 
fungi of Scots pine. They verifi ed that 60 and 
70 °C reduced the mean of the species, but not 
45 °C. The composition changed because of heat, 
but most of the ECM fungi, such as  R. roseolus , 
 C. geophilum , and several unidentifi ed species, 
survived. 

 Sustainable soil ecosystem services require 
the management of the benefi cial soil organisms 
that are considered of economic value and which 
are available in the market for their application. 
Reforestation using container-grown seedlings of 
 P. pinaster  produced in nurseries is a common 
practice in many countries. Fertilizers are often 
used in nurseries. However, the use of chemical 
fertilizers can constitute a threat to the environ-
ment, in addition to modifying nutrient availability 
of the fertilized seedlings, which may not be able 
to adapt to forest soil conditions when transplanted. 

Sousa et al. ( 2012 ) showed that selected ECM 
fungi could be used as a benefi cial biotechnologi-
cal tool in the nursery production of  P. pinaster , 
without the need of fertilizers. Oliveira et al. 
( 2012 ) found that inoculation with selected ECM 
fungi can be an advantageous ecotechnological 
approach that can be used to improve the nursery 
production of  P. pinaster . The inoculation of 
Chinese pine ( Pinus tabulaeformis  Carr.) seed-
lings with  Boletus luridus , under fi eld experi-
mental conditions, has shown to signifi cantly 
infl uence bacterial functional diversity in the rhi-
zosphere of  P. tabulaeformis  seedlings, thus 
highlighting the importance of the application of 
ECM fungal inoculum in order to promote micro-
bial community diversity of soil in forest restora-
tion projects (Zhang et al.  2010 ). 

 The fast growth rate of American chestnut, 
coupled with its quality timber, makes it a desired 
species for use in reforestation projects. Bauman 
et al. ( 2013 ) have evaluated various soil prepara-
tion methods that promote ECM colonization and 
American chestnut  Castanea dentata  establish-
ment in coal mine restoration projects.  Quercus 
ilex  forests play ecological and socioeconomic 
roles by protecting the environment and provid-
ing wood, forage resources, and tourism. Oliveira 
et al. ( 2010 ) considered the management of nurs-
ery practices for effi cient ECM fungi application 
in order to establish  Q. ilex  plantations. The ECM 
inoculants could be rhizosphere soil from forests, 
spores, or vegetative mycelia, although the soil 
from forests has the disadvantage of perhaps con-
taining both benefi cial (e.g., mycorrhizal fungi) 
and harmful (pathogenic fungi) microorganisms. 
The use of spores or vegetative mycelia of ECM 
fungi seems to be the most convenient and practi-
cal technique although the supply of spores is 
limited by the onset of the rainy season and the 
maturing of the fruiting bodies. Aggangan et al. 
( 2012 ) have developed a protocol for the produc-
tion of quality rooted cuttings for plantation 
establishment or enrichment planting in the red 
soil of Caliraya, Philippines, of  Anisoptera thu-
rifera  (Blanco) Blume and  Shorea guiso  (Blanco) 
Blume, which belong to the  Dipterocarpaceae , 
the most important tree family in the tropical 
 forests of southeast Asia, and are considered as 
endangered species. These authors have shown 
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that ECM mycelia entrapped in alginate beads 
are effective in promoting the growth and P 
uptake of  A. thurifera  and  S. guiso . Immobilized 
mycelium offers more advantages than non- 
immobilized inoculum such as longer survival in 
the soil, easy storage, and greater viability. 
However, the cultivation in fermenters or in bio-
reactors for the large-scale production of myce-
lial inoculum may compromise the quality of the 
inoculum and thus limit the application of this 
technique. Forecasting the response of ECM 
fungi to environmental changes represents an 
important step in maintaining forest productivity 
for the future. Jarvis et al. ( 2013 ) have analyzed 
and identifi ed fungal communities from 15 semi-
natural Scots pine ( P. sylvestris  L.) forests 
through ITS sequencing. Their data have demon-
strated an important effect of rainfall and soil 
moisture on community composition at the spe-
cies level and less infl uence of temperature on the 
abundance of ECM exploration types. Valdés 
et al. ( 2006 ) observed that a severe drought had an 
important effect on both total fi ne-root biomass 
and the ECM-root biomass in a tropical pine forest 
and suggested that forest management practices 
should consider the effects of drought in reducing 
the capacity of  Pinus oaxacana  to form ECM.  

    Food Applications and Toxicity 
of ECM Fungi 

 Fungi are the most productive biological sources 
of primary and secondary metabolites that have 
long been exploited by the pharmaceutical and 
food industries. Some of them, such as  Boletus  
species, are also an important source of proteins, 
carbohydrates, fatty acids (mainly linoleic acid), 
sugars (mainly mannitol and trehalose), and vita-
mins (tocopherols and ascorbic acid), as well as 
phenolic acids (Heleno et al.  2011 ). Since pheno-
lic acids have antioxidative properties, they are 
currently being exploited by food and pharma-
ceutical industries. Important antioxidative prop-
erties have been found for polysaccharides 
extracted from  B. edulis , and these could be 
employed as ingredients in healthy food to allevi-
ate oxidative stress (Zhang et al.  2011 ). A lectin 
with antitumoral properties has also been found, 

thus opening new perspectives in research, with 
the aim of developing new drugs for cancer 
therapies (Bovi et al.  2011 ). A homologous of 
the sugar-binding antiviral protein cyanovirin-N 
(CVN), previously identifi ed in the cyanobacte-
rium  Nostoc ellipsosporum , has been found by 
analysis of transcript sequences deriving from a 
gene expression profi ling study conducted in the 
truffl e  Tuber borchii , and a novel protein family 
has been described in fi lamentous fungi and in 
the fern  Ceratopteris richardii  (Percudani et al. 
 2005 ). It has been proposed that these fi ndings 
provide candidate polypeptides to be tested as 
antiviral agents (Percudani et al.  2005 ). Two 
genes coding for putative lectins belonging to the 
CVNH (CyanoVirin-N Homolog) family have 
also been found in  T. melanosporum  genome 
(   http: / /mycor.nancy.inra.fr / IMGC/Tuber 
Genome/index.html    ). However, preliminary 
results have shown that TbCVNH (the CVNH 
discovered in  T. borchii ) seems to be completely 
inactive in the antiviral activity test (Koharudin et 
al.  2008 ). Mushrooms produce particular aroma 
compounds that are of interest for industrial 
applications, such as 1-octen-3-ol, which is often 
added as fl avoring to processed products in order 
to reintegrate its loss which occurs during the 
preparation of these food products (Zawirska-
Wojtasiak  2004 ). Long-chain unsaturated fatty 
acids, such as palmitoleic acid and linoleic acid, 
show antibacterial activity and are used as anti-
microbial food additives (Zheng et al.  2005 ). To 
date, more than 200 volatile organic compounds 
have been described from various truffl e species, 
and the biosynthetic pathways involved in vola-
tile biosynthesis have been traced in the genome 
of a mushroom that is highly appreciated for its 
special taste and aroma, the black truffl e  T. mela-
nosporum  (Martin et al.  2010 ). From the ecological 
point of view, truffl e volatiles are used to attract 
mammals and insects, which are thus able to 
locate the precious hypogeous fungi, feed on 
them, and spread their spores. In addition, truffl e 
volatiles diffuse in the soil and mediate complex 
interactions with microorganisms and plant roots 
(Splivallo et al.  2011 ; Mello et al.  2013 ). Truffl es and 
porcini are greatly appreciated throughout the 
world, both as fresh fruiting bodies and as 
ingredients in processed products (Mello  2012 ). 
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 A qPCR assay has been developed to authen-
ticate and quantify  T. magnatum  and  T. melanos-
porum  in food matrices that have undergone 
intensive transformation processes, such as 
cream and butter (Rizzello et al.  2012 ). This 
method is promising in detecting the incorrect 
labeling of processed products and can therefore 
be used to protect the consumer and to assess 
food quality. The rapid identifi cation of mush-
room poisoning, which continues to be a public 
health concern in Europe, the USA, and several 
other parts of the world, is particularly important. 
The majority of reported fatal intoxications have 
been attributed to a few species of the  Amanita  
genus and in particular to the death cap  Amanita 
phalloides , which can cause a high mortality rate 
(10–30 % in adults).  A. phalloides  are often mis-
taken in appearance for nonpoisonous species, 
and the ingestion of one single mushroom cap 
may be suffi cient to cause death within 2–8 days 
(Gausterer et al.  2014 ). Besides the previous pub-
lications that have reported the use of conven-
tional and real-time PCR in the cases of suspected 
mushroom poisoning as an alternative to mor-
phological investigations and as a complemen-
tary approach to toxicological analyses, an article 
on a rapid and sensitive detection of genetic 
traces from poisonous mushrooms in a variety 
of matrices, including raw, fried, and digested 
mushroom homogenates, spiked feces, and clini-
cal samples (vomit, stool), has just been pub-
lished by Gausterer et al. ( 2014 ). Mushrooms 
belonging to the  Boletus edulis  sensu lato group, 
a complex of at least four species of ECM fungi 
in the genus  Boletus  section  Boletus  (Singer 
 1986 ), constitute an interesting example of con-
trasting fungal features. These fruiting bodies are 
in fact in high demand as mushrooms because of 
their pleasant fl avor and texture, but at the same 
time, they have been shown to induce allergic 
symptoms either through inhalation, ingestion, or 
contact (Helbling et al.  2002 ). In order to guaran-
tee safe naturally derived food, Mello et al. 
( 2006b ) developed specifi c primers for the unam-
biguous detection of  B. edulis  sensu stricto,  B. 
aereus ,  B. pinophilus , and  B. aestivalis . In addi-
tion, the relationships of  B. violaceofuscus  with 
the members of  B. edulis  s.l. have been examined. 

The data that will be obtained from the  B. edulis  
genome sequencing project, which is currently in 
progress, will surely allow our knowledge on its 
allergenic potential and the presence of allergen 
orthologues to be improved. Thanks to the avail-
ability of the genome sequence, an extremely low 
allergenic potential and the lack of key myco-
toxin biosynthetic enzymes have been found in 
the black truffl e  T. melanosporum  (Martin et al. 
 2010 ).     
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