716 research outputs found

    The global impact of supersaturation in a coupled chemistry-climate model

    Get PDF
    International audienceIce supersaturation is important for understanding condensation in the upper troposphere. Many general circulation models however do not permit supersaturation. In this study, a coupled chemistry climate model, the Whole Atmosphere Community Climate Model (WACCM), is modified to include supersaturation for the ice phase. Rather than a study of a detailed parameterization of supersaturation, the study is intended as a sensitivity experiment, to understand the potential impact of supersaturation, and of expected changes to stratospheric water vapor, on climate and chemistry. High clouds decrease and water vapor in the stratosphere increases at a similar rate to the prescribed supersaturation (20% supersaturation increases water vapor by nearly 20%). The stratospheric Brewer-Dobson circulation slows at high southern latitudes, consistent with slight changes in temperature likely induced by changes to cloud radiative forcing. The cloud changes also cause an increase in the seasonal cycle of near tropopause temperatures, increasing them in boreal summer over boreal winter. There are also impacts on chemistry, with small increases in ozone in the tropical lower stratosphere driven by enhanced production. The radiative impact of changing water vapor is dominated by the reduction in cloud forcing associated with fewer clouds (~+0.6 Wm?2) with a small component likely from the radiative effect (greenhouse trapping) of the extra water vapor (~+0.2 Wm?2), consistent with previous work. Representing supersaturation is thus important, and changes to supersaturation resulting from changes in aerosol loading for example, might have a modest impact on global radiative forcing, mostly through changes to clouds. There is no evidence of a strong impact of water vapor on tropical tropopause temperatures

    Trajectory model simulations of ozone (O<sub>3</sub>) and carbon monoxide (CO) in the lower stratosphere

    Get PDF
    A domain-filling, forward trajectory model originally developed for simulating stratospheric water vapor is used to simulate ozone (O3) and carbon monoxide (CO) in the lower stratosphere. Trajectories are initialized in the upper troposphere, and the circulation is based on reanalysis wind fields. In addition, chemical production and loss rates along trajectories are included using calculations from the Whole Atmosphere Community Climate Model (WACCM). The trajectory model results show good overall agreement with satellite observations from the Aura Microwave Limb Sounder (MLS) and the Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS) in terms of spatial structure and seasonal variability. The trajectory model results also agree well with the Eulerian WACCM simulations. Analysis of the simulated tracers shows that seasonal variations in tropical upwelling exerts strong influence on O3 and CO in the tropical lower stratosphere, and the coupled seasonal cycles provide a useful test of the transport simulations. Interannual variations in the tracers are also closely coupled to changes in upwelling, and the trajectory model can accurately capture and explain observed changes during 2005–2011. This demonstrates the importance of variability in tropical upwelling in forcing chemical changes in the tropical lower stratosphere

    Simulation of Energetic Particle Precipitation Effects During the 2003-2004 Arctic Winter

    Get PDF
    Energetic particle precipitation (EPP) during the 2003-2004 Arctic winter led to the production and subsequent transport of reactive odd nitrogen (NOx=NO+NO2) from the mesosphere and lower thermosphere (MLT) into the stratosphere. This caused NOx enhancements in the polar upper stratosphere in April 2004 that were unprecedented in the satellite record. Simulations of the 2003-2004 Arctic winter with the Whole Atmosphere Community Climate Model using Specified Dynamics (SD-WACCM) are compared to satellite measurements to assess our understanding of the observed NOx enhancements. The comparisons show that SD-WACCM clearly displays the descent of NOx produced by EPP but underestimates the enhancements by at least a factor of four. Comparisons with NO measurements in January and February indicate that SD-WACCM most likely underestimates EPP-induced NO production locally in the mesosphere because it does not include precipitation of high energy electrons. Comparisons with temperature measurements suggest that SD-WACCM does not properly simulate recovery from a sudden stratospheric warming in early January, resulting in insufficient transport from the MLT into the stratosphere. Both of these factors probably contribute to the inability of SD-WACCM to simulate the stratospheric NOx enhancements, although their relative importance is unclear. The work highlights the importance of considering the full spectrum of precipitating electrons in order to fully understand the impact of EPP on the atmosphere. It also suggests a need for high-quality meteorological data and measurements of NOx throughout the polar winter MLT. ©2015. American Geophysical Union

    Commentary on using equivalent latitude in the upper troposphere and lower stratosphere

    Get PDF
    We discuss the use of potential vorticity (PV) based equivalent latitude (EqLat) and potential temperature (<i>θ</i>) coordinates in the upper troposphere and lower stratosphere (UTLS) for chemical transport studies. The main objective is to provide a cautionary note on using EqLat-<i>θ</i> coordinates for aggregating chemical tracers in the UTLS. Several examples are used to show 3-D distributions of EqLat together with chemical constituents for a range of <i>θ</i>. We show that the use of PV-<i>θ</i> coordinates may not be suitable for several reasons when tropospheric processes are an important part of a study. Due to the different static stability structures between the stratosphere and troposphere, the use of <i>θ</i> as a vertical coordinate does not provide equal representations of the UT and LS. Since the <i>θ</i> surfaces in the troposphere often intersect the surface of the Earth, the <i>θ</i> variable does not work well distinguishing the UT from the boundary layer when used globally as a vertical coordinate. We further discuss the duality of PV/EqLat as a tracer versus as a coordinate variable. Using an example, we show that while PV/EqLat serves well as a transport tracer in the UTLS region, it may conceal the chemical structure associated with wave breaking when used as a coordinate to average chemical tracers. Overall, when choosing these coordinates, considerations need to be made not only based on the time scale of PV being a conservative tracer, but also the specific research questions to be addressed

    Effects of stratospheric aerosol surface processes on the LLNL two-dimensional zonally averaged model

    Get PDF
    We have investigated the effects of incorporating representations of heterogeneous chemical processes associated with stratospheric sulfuric acid aerosol into the LLNL two-dimensional, zonally averaged, model of the troposphere and stratosphere. Using distributions of aerosol surface area and volume density derived from SAGE II satellite observations, we were primarily interested in changes in partitioning within the Cl- and N- families in the lower stratosphere, compared to a model including only gas phase photochemical reactions. We have considered the heterogeneous hydrolysis reactions N2O5 + H2O(aerosol) yields 2 HNO3 and ClONO2 + H2O(aerosol) yields HOCl + HNO3 alone and in combination with the proposed formation of nitrosyl sulfuric acid (NSA) in the aerosol and its reaction with HCl. Inclusion of these processes produces significant changes in partitioning in the NO(y) and ClO(y) families in the middle stratosphere

    The Viability of Trajectory Analysis for Diagnosing Dynamical and Chemical Influences on Ozone Concentrations in the UTLS

    Get PDF
    The viability of trajectory analysis for diagnosing the interplay between chemistry and dynamics is investigated by comparing ozone mixing ratios modelled using air-parcel pathways to values observed along flight tracks during ATTREX (Airborne Tropical TRopopause EXperiment). Trajectories are initiated at the locations of ozone observations and tracked backward in time to their sources at termini of backward trajectories. The modelled values of ozone utilize 3-dimensional analysis fields from WACCM (Whole Atmosphere Community Climate Model) (a chemical-climate model with dynamical fields nudged towards MERRA (Modern-Era Retrospective Analysis and Research Applications) reanalysis) and ERA-interim (product of ECMWF - the European Centre for Medium-Range Weather Forecasts) to determine source mixing ratios with chemical production and loss terms derived from the ozone chemistry used in WACCM. A statistical base of modelled ozone is constructed with 6 trajectory platforms (adiabatic, diabatic, and kinematic forced by ERA-interim and MERRA), two chemical models (WACCM chemistry and no chemistry), and 4 trajectory lengths (5, 10, 20, and 30 days). Linear regression is employed to separate systematic errors from random errors and to characterize the impact of source mixing ratios, path length, vertical motion, and chemistry on modelled ozone errors. Errors in the analysis ozone fields are large, if not dominant, contributors to model error. Random errors are particularly large for point-by-point comparisons, however averaging over 800 km (75 minutes) flight segments substantially reduces random error and exposes systematic errors. Of the two analysis ozone data sets, WACCM, which incorporates detailed chemistry, provides the smaller systematic errors while ERA-interim, which has crude chemistry but assimilates observational data, has the smaller random errors. Of the different trajectory platforms, adiabatic calculations produce the smaller random errors (irrespective of the use of chemistry) but both vertical motion and chemistry are required to optimally reduce systematic errors. These results suggest that meaningful analysis of dynamical and chemical interactions that control ozone mixing ratios are viable on spatial scales larger than a few reanalysis grid spaces, that errors in the analyzed ozone data sets are large but not prohibitively so, and that vertical velocities and heating rates from reanalysis data, while problematic, contain useful information [on the ozone concentrations in the UTLS (Upper Troposphere/Lower Stratosphere)]

    The potential to narrow uncertainty in projections of stratospheric ozone over the 21st century

    Get PDF
    Future stratospheric ozone concentrations will be determined both by changes in the concentration of ozone depleting substances (ODSs) and by changes in stratospheric and tropospheric climate, including those caused by changes in anthropogenic greenhouse gases (GHGs). Since future economic development pathways and resultant emissions of GHGs are uncertain, anthropogenic climate change could be a significant source of uncertainty for future projections of stratospheric ozone. In this pilot study, using an "ensemble of opportunity" of chemistry-climate model (CCM) simulations, the contribution of scenario uncertainty from different plausible emissions pathways for ODSs and GHGs to future ozone projections is quantified relative to the contribution from model uncertainty and internal variability of the chemistry-climate system. For both the global, annual mean ozone concentration and for ozone in specific geographical regions, differences between CCMs are the dominant source of uncertainty for the first two-thirds of the 21st century, up-to and after the time when ozone concentrations return to 1980 values. In the last third of the 21st century, dependent upon the set of greenhouse gas scenarios used, scenario uncertainty can be the dominant contributor. This result suggests that investment in chemistry-climate modelling is likely to continue to refine projections of stratospheric ozone and estimates of the return of stratospheric ozone concentrations to pre-1980 levels
    corecore