836 research outputs found

    The global impact of supersaturation in a coupled chemistry-climate model

    Get PDF
    International audienceIce supersaturation is important for understanding condensation in the upper troposphere. Many general circulation models however do not permit supersaturation. In this study, a coupled chemistry climate model, the Whole Atmosphere Community Climate Model (WACCM), is modified to include supersaturation for the ice phase. Rather than a study of a detailed parameterization of supersaturation, the study is intended as a sensitivity experiment, to understand the potential impact of supersaturation, and of expected changes to stratospheric water vapor, on climate and chemistry. High clouds decrease and water vapor in the stratosphere increases at a similar rate to the prescribed supersaturation (20% supersaturation increases water vapor by nearly 20%). The stratospheric Brewer-Dobson circulation slows at high southern latitudes, consistent with slight changes in temperature likely induced by changes to cloud radiative forcing. The cloud changes also cause an increase in the seasonal cycle of near tropopause temperatures, increasing them in boreal summer over boreal winter. There are also impacts on chemistry, with small increases in ozone in the tropical lower stratosphere driven by enhanced production. The radiative impact of changing water vapor is dominated by the reduction in cloud forcing associated with fewer clouds (~+0.6 Wm?2) with a small component likely from the radiative effect (greenhouse trapping) of the extra water vapor (~+0.2 Wm?2), consistent with previous work. Representing supersaturation is thus important, and changes to supersaturation resulting from changes in aerosol loading for example, might have a modest impact on global radiative forcing, mostly through changes to clouds. There is no evidence of a strong impact of water vapor on tropical tropopause temperatures

    The Viability of Trajectory Analysis for Diagnosing Dynamical and Chemical Influences on Ozone Concentrations in the UTLS

    Get PDF
    The viability of trajectory analysis for diagnosing the interplay between chemistry and dynamics is investigated by comparing ozone mixing ratios modelled using air-parcel pathways to values observed along flight tracks during ATTREX (Airborne Tropical TRopopause EXperiment). Trajectories are initiated at the locations of ozone observations and tracked backward in time to their sources at termini of backward trajectories. The modelled values of ozone utilize 3-dimensional analysis fields from WACCM (Whole Atmosphere Community Climate Model) (a chemical-climate model with dynamical fields nudged towards MERRA (Modern-Era Retrospective Analysis and Research Applications) reanalysis) and ERA-interim (product of ECMWF - the European Centre for Medium-Range Weather Forecasts) to determine source mixing ratios with chemical production and loss terms derived from the ozone chemistry used in WACCM. A statistical base of modelled ozone is constructed with 6 trajectory platforms (adiabatic, diabatic, and kinematic forced by ERA-interim and MERRA), two chemical models (WACCM chemistry and no chemistry), and 4 trajectory lengths (5, 10, 20, and 30 days). Linear regression is employed to separate systematic errors from random errors and to characterize the impact of source mixing ratios, path length, vertical motion, and chemistry on modelled ozone errors. Errors in the analysis ozone fields are large, if not dominant, contributors to model error. Random errors are particularly large for point-by-point comparisons, however averaging over 800 km (75 minutes) flight segments substantially reduces random error and exposes systematic errors. Of the two analysis ozone data sets, WACCM, which incorporates detailed chemistry, provides the smaller systematic errors while ERA-interim, which has crude chemistry but assimilates observational data, has the smaller random errors. Of the different trajectory platforms, adiabatic calculations produce the smaller random errors (irrespective of the use of chemistry) but both vertical motion and chemistry are required to optimally reduce systematic errors. These results suggest that meaningful analysis of dynamical and chemical interactions that control ozone mixing ratios are viable on spatial scales larger than a few reanalysis grid spaces, that errors in the analyzed ozone data sets are large but not prohibitively so, and that vertical velocities and heating rates from reanalysis data, while problematic, contain useful information [on the ozone concentrations in the UTLS (Upper Troposphere/Lower Stratosphere)]

    Inter-model comparison of global hydroxyl radical (OH) distributions and their impact on atmospheric methane over the 2000–2016 period

    Get PDF
    The modeling study presented here aims to estimate how uncertainties in global hydroxyl radical (OH) distributions, variability, and trends may contribute to resolving discrepancies between simulated and observed methane (CH4) changes since 2000. A multi-model ensemble of 14 OH fields was analyzed and aggregated into 64 scenarios to force the offline atmospheric chemistry transport model LMDz (Laboratoire de Meteorologie Dynamique) with a standard CH4 emission scenario over the period 2000–2016. The multi-model simulated global volume-weighted tropospheric mean OH concentration ([OH]) averaged over 2000–2010 ranges between 8:7*10^5 and 12:8*10^5 molec cm-3. The inter-model differences in tropospheric OH burden and vertical distributions are mainly determined by the differences in the nitrogen oxide (NO) distributions, while the spatial discrepancies between OH fields are mostly due to differences in natural emissions and volatile organic compound (VOC) chemistry. From 2000 to 2010, most simulated OH fields show an increase of 0.1–0:3*10^5 molec cm-3 in the tropospheric mean [OH], with year-to-year variations much smaller than during the historical period 1960–2000. Once ingested into the LMDz model, these OH changes translated into a 5 to 15 ppbv reduction in the CH4 mixing ratio in 2010, which represents 7%–20% of the model-simulated CH4 increase due to surface emissions. Between 2010 and 2016, the ensemble of simulations showed that OH changes could lead to a CH4 mixing ratio uncertainty of > 30 ppbv. Over the full 2000–2016 time period, using a common stateof- the-art but nonoptimized emission scenario, the impact of [OH] changes tested here can explain up to 54% of the gap between model simulations and observations. This result emphasizes the importance of better representing OH abundance and variations in CH4 forward simulations and emission optimizations performed by atmospheric inversions

    A new interpretation of total column BrO during Arctic spring

    Get PDF
    Emission of bromine from sea-salt aerosol, frost flowers, ice leads, and snow results in the nearly complete removal of surface ozone during Arctic spring. Regions of enhanced total column BrO observed by satellites have traditionally been associated with these emissions. However, airborne measurements of BrO and O3 within the convective boundary layer (CBL) during the ARCTAS and ARCPAC field campaigns at times bear little relation to enhanced column BrO. We show that the locations of numerous satellite BrO “hotspots” during Arctic spring are consistent with observations of total column ozone and tropopause height, suggesting a stratospheric origin to these regions of elevated BrO. Tropospheric enhancements of BrO large enough to affect the column abundance are also observed, with important contributions originating from above the CBL. Closure of the budget for total column BrO, albeit with significant uncertainty, is achieved by summing observed tropospheric partial columns with calculated stratospheric partial columns provided that natural, short-lived biogenic bromocarbons supply between 5 and 10 ppt of bromine to the Arctic lowermost stratosphere. Proper understanding of bromine and its effects on atmospheric composition requires accurate treatment of geographic variations in column BrO originating from both the stratosphere and troposphere

    Analysis of satellite-derived Arctic tropospheric BrO columns in conjunction with aircraft measurements during ARCTAS and ARCPAC

    Get PDF
    We derive tropospheric column BrO during the ARCTAS and ARCPAC field campaigns in spring 2008 using retrievals of total column BrO from the satellite UV nadir sensors OMI and GOME-2 using a radiative transfer model and stratospheric column BrO from a photochemical simulation. We conduct a comprehensive comparison of satellite-derived tropospheric BrO column to aircraft in-situ observations of BrO and related species. The aircraft profiles reveal that tropospheric BrO, when present during April 2008, was distributed over a broad range of altitudes rather than being confined to the planetary boundary layer (PBL). Perturbations to the total column resulting from tropospheric BrO are the same magnitude as perturbations due to longitudinal variations in the stratospheric component, so proper accounting of the stratospheric signal is essential for accurate determination of satellite-derived tropospheric BrO. We find reasonably good agreement between satellite-derived tropospheric BrO and columns found using aircraft in-situ BrO profiles, particularly when satellite radiances were obtained over bright surfaces (albedo \u3e0.7), for solar zenith angl

    The potential to narrow uncertainty in projections of stratospheric ozone over the 21st century

    Get PDF
    Future stratospheric ozone concentrations will be determined both by changes in the concentration of ozone depleting substances (ODSs) and by changes in stratospheric and tropospheric climate, including those caused by changes in anthropogenic greenhouse gases (GHGs). Since future economic development pathways and resultant emissions of GHGs are uncertain, anthropogenic climate change could be a significant source of uncertainty for future projections of stratospheric ozone. In this pilot study, using an "ensemble of opportunity" of chemistry-climate model (CCM) simulations, the contribution of scenario uncertainty from different plausible emissions pathways for ODSs and GHGs to future ozone projections is quantified relative to the contribution from model uncertainty and internal variability of the chemistry-climate system. For both the global, annual mean ozone concentration and for ozone in specific geographical regions, differences between CCMs are the dominant source of uncertainty for the first two-thirds of the 21st century, up-to and after the time when ozone concentrations return to 1980 values. In the last third of the 21st century, dependent upon the set of greenhouse gas scenarios used, scenario uncertainty can be the dominant contributor. This result suggests that investment in chemistry-climate modelling is likely to continue to refine projections of stratospheric ozone and estimates of the return of stratospheric ozone concentrations to pre-1980 levels

    Ozone sensitivity to varying greenhouse gases and ozone-depleting substances in CCMI-1 simulations

    Get PDF
    Ozone fields simulated for the first phase of the Chemistry-Climate Model Initiative (CCMI-1) will be used as forcing data in the 6th Coupled Model Intercomparison Project. Here we assess, using reference and sensitivity simulations produced for CCMI-1, the suitability of CCMI-1 model results for this process, investigating the degree of consistency amongst models regarding their responses to variations in individual forcings. We consider the influences of methane, nitrous oxide, a combination of chlorinated or brominated ozone-depleting substances, and a combination of carbon dioxide and other greenhouse gases. We find varying degrees of consistency in the models' responses in ozone to these individual forcings, including some considerable disagreement. In particular, the response of total-column ozone to these forcings is less consistent across the multi-model ensemble than profile comparisons. We analyse how stratospheric age of air, a commonly used diagnostic of stratospheric transport, responds to the forcings. For this diagnostic we find some salient differences in model behaviour, which may explain some of the findings for ozone. The findings imply that the ozone fields derived from CCMI-1 are subject to considerable uncertainties regarding the impacts of these anthropogenic forcings. We offer some thoughts on how to best approach the problem of generating a consensus ozone database from a multi-model ensemble such as CCMI-1
    corecore