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ABSTRACT

We have investigated the effects of incorporating

representations of heterogeneous chemical processes
associated with stratospheric sulfuric acid aerosol

into file LLNL two-dimensional, zonally averaged,

model of the troposphere and stratosphere. Using
distributions of aerosol surface ,area and volume

density derived from SAGE II satellite observations,

we were primarily interested in changes i,i

partitioning within tile CI- and N- families in tile

lower stratosphere, compared to a model including

only gas phase photochemical reactions. We have
considered tile heterogeneous hydrolysis reactions

N205 + 1120(aerosol ) --4 2 lINt3(?)

,'rod

CIONO 2 + 1120(aerosol ) --_ IIOCI(']') + 11NO3(1")

alone and in combination with the proposed

formation of nitrosyl sulfuric acid (NSA) in the
aerosol ,'md its reaction with IICI

IICI + NOI lSO4(aerosol) --_ CINO($) + I12SO 4.

Inclusion of these processes produces significant

changes in partitioning in the NOy and CIty fmnilies
in tim middle stratosphere.

INTRODUCTION

Numerical models of the troposphere and

stratosphere including only gas-phase homogeneous

photochemical processes can reproduce many of tile
observed features of trace constituent distributions.

l[owevcr, homogeneous models cml not represent ti_e

chemical processcs (Solomon, 1988) responsible for
the observed Iowcr slratosphere winler polar behavior

of ozone and partitioning among the nitrogen and
chlorine species. These processes require local
temperatures low enough to condense water or a

mixturc of nitric acid and water into particles

providing a surface for heterogeneous reactions
which transform more stable chlorine reservoir

species into more labile spceics.

l lomogencous models _dso fidl It produce tim bias

toward nitric acid observed in the parlitioning of the
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nitrogen oxide family at mid and high latitudes in the
winter hemisphere. Two reactions of imporlance that

would take place on the surface of stratospheric
sulfuric acid aerosol have been identified through

laboratory investigation (Hofmann and Solomon,

1989, and WMO/UNEP, 1992)

N205 + li20(aerosol) _ 2 HNO3(_') (1)

and

CIONO 2 + l120(aerosol ) .--4i lOCI(_) + I1NO3(T ). (2)

Both reactions convert NO x to HNO 3, supplementing

the homogeneous termolecular reaction of OH with

NO 2 .

In consideration of the upcoming availability of a
vastly increased data base of stratospheric trace

species from the Upper Atmospheric Research
Satellite (LIARS), we have investigated the effects, in

a numerical atmospheric model, that the sulfuric acid
aerosol reactions above would have on species

distributions, comp,'u'ed to inclusion of only gas phase

processes. In this model study we have used an

aerosol burden representing a climatological average
of several years of SAGE II satellite data

(WMO/UNEP, 1992), but, in order to distinguish the
effects of tile sulfuric acid aerosol reactions, have not

included processes related to polar stratospheric

clouds (PSC). Future direct comparison to UARS
observations will be done with inclusion of the

observed aerosol burden as perturbed by the Mt.

Pinatubo eruption, as well ,as with PSC processes.

We have also taken a preliminary look at the

effects of an additional process proposed to occur in
sulfuric acid aerosol of appropriate composition.

Nitrosyl sulfuric acid (NOIISO 4) has been tentatively
identified as a common constituent of stratospheric

sulfuric acid aerosol (F,'u'low et al., 1977) and is

known from bulk phase laboratory work to be

capable of existence as an ionic solute or solid within

a r,'mge of sulfuric acid concentration and temperature

characteristic of stratospheric aerosol. Burley and
Johnston (1992) have shown that, based on current

thermodynamic knowledge of the system, it is
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possiblethatgaseousIICIintilestratospherecould
react with NSA present in aerosol to produce nitrosyl
chloride

I lCI + NOI ISO4(aerosol ) --4CINO(I') + Ii2SO 4. (3)

CINO absorbs ill the near ultraviolet with breaking of
the CI-N bond. Reaction (3), if it occurs, would then

act to shift tile parlitioning of ClOy toward CI-
containing radical species and temporary CI

reservoirs, such as CIONO 2, ,and away from IICI. Its
importance depends on its magnitude compared to the
reaction of O1 [ with IICI, which also releases CI.

MO1)EL DESCRII_'TION

The model used in this study is a version of the

Lawrence Livermore National Laboratory (LLNL)

two dimensional model of the troposphere and
stratosphere, with about 10 ° latitude resolution and 3

km vertical resolution in tile stratosphere extending

from pole to pole and the surface to 60 lun. The gas
phase homogeneous photochemistry in the model

cncompasses about 50 species and 120 thermal and

photolytic reactions, for which kinetic and spectral
par,'uncters are taken from current recommendations
(NASA, 1990). The circulation in the model is

calculated interactively from the net heating rates

resulting from the modeled species distributions and a
climatological temperature field. In order to isolate

the local photochemical effects of, for example,
additional reactions, the circulation can be fixed to a

previously calculated result.

Reactions (1) and (2) are trcated as kinetically

controlled, where the rate of the reaction is

proportional to the rate of collision through the

dimensionless reaction probability y. The first order
rate constant for reaction is given by

v
g=77s

i

where v is the average molecular velocity and .S is

the aerosol surface ,area density. In this study, v is

taken to be 5200 cm s-I for both N205 ,and CIONO 2
throughout the model domain. Based on laboratory

results, the reaction probability for N205 is assigned
0.1. For CIONO 2 the reaction probability is given by

y(2) = 0.006cxp(-0.15(T- 200)),

where the temperature dependence arises from the

dcpcudcnce of the reaction probability on aerosol

composition, which is in turn dependcnt on
loin r_ra[ tll_.

Surfacc arca dcnsity for this study is based on an

analysis of SAGI:_ II dam by Poolc et al.

(WMO/UNEP, 1992) and is rcpresentative of an

average aunosphcrc unpcrturbcd by any major rccent

volcanic eruption. The prescribed values are

functions of altitude, latitude, and, coarsely, season,

cxtcnding from 12 to 32 km and pole to pole•

Mi,fimum and maximum values are about 0.025 and

1.75 × 10 -8 cm2cm -3, respectively.

The rate constant for the proposed reaction of HCI

with NSA dissolved or incorporated in the aerosol
should depend on the NSA concentration in the

aerosol, and may be controlled either by the

collisional rate constant for }ICI with the particle and

an associated reaction probability, or by the llenry's
Law solubility for HCI and a solution phase rate

constant. The presence of NSA in the aerosol depends

on the concentration of H2SO 4. According to Burley

and Johnston (1992), NSA can be present at lower

stratospheric temperatures when the It2SO 4 weight
per cent exceeds about 60%. The aerosol composition

in the model was determined by interpolating from
the tabulated results of Jaecker-Voirol (Jaecker-

Voirol et at., 1990) for bin,'u'y I120/H2SO 4 mixtures,
using the model temperature and water partial
pressure. Fig. 1 below shows the c,'dculated values for

July. The modeled concentration is generally below
60% in the lowest portion of the aerosol distribution,

but above 60% in the 15-30 km region of greatest

importance to ozone controlling processes.
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Figure 1. Derived composition of July stratospheric sulfuric acid

aerosol in 112SO 4 weight per cent. Solid contours are greater than

60 per cent. Dashed conlours are smaller than 60 per cent.

Burley and Johnston (1992) propose several
possible formation reactions for NSA, involving

various NOy species, including

NO + lINd3 + I12SO4 .--_.NOIISO4 + NO2 + 112o (4)

and

NO + NO2 + 2 I12SO,I -', 2 NOIISO,I + II2o. (5)

Farlow et al (1977) tentatively observed solid NSA
crystals in the collected aerosol, which would be
formed when the NSA conccnuation in the aerosol

exceeded its solubility iq II2SO 4. A proper
calculation of the NSA abundance would require

rcpresentiqg the processes of aerosol formation,

growth, and loss, as wcll as the heterogeneous NSA-

forming reactions. In this preliminary study we have

assumed that the processes forming and destroying

NSA arc rapid compared to its abundance, allowing
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theuse of a steady state expression for NSA

abundance. The formation rate is taken as equal to the

NO/aerosol collision rate times a reaction probability
of 0.01, following Burley and Johnston (1992). Tile
NSA loss rate is assumed to be the HCI/aerosol

collision rate times a reaction probability representing

the relative abundance of NSA to H2SO 4 at the
particle surface, so that the atmospheric concentration
of NSA is

[NSA(ss) 1.=.(2.0.0t*[NOI* vln'so'}g ]_

V is the aerosol volume density and (It2SO4} is the
concentration of sulfuric acid in the aerosol. V is

simply scaled from the surface area density assuming
that the surface area in 1 cm 3 of atmosphere is on one

spherical particle. Fig. 2 shows the resulting

atmospheric concentration of NSA when these
assumptions are made. The values are typically a few

per cent or less of the H2SO 4 concentration.
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Figure 2. Caleulaled steady slale concentralion of NSA in tool

cm "3. (a) December, (b) July.

Given these assumptions, tile rate of llCl loss attd

CINO produclion in reaction (3) is expressed as

dlCtNO ] T, s [HCI][NSA(ss)].

dt = 4 (V{II2SO,})Z

The calculated rate of IICI + NSA is compared to the

rate ofOlI + IICI in Fig. 3.
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Figure 3. Calculated rates of reaction in December (molecules

cm -3 s"l) for (a) HCI + O11 --4 CI + 1120. aml (b) IICI + NSA --4

CINO + I12SO 4.

The model was integrated to steady state using

1990 ambient boundary conditions for the source

species, establishing the circulation for the case
including reactions (1)-(3). This circulation was then

prescribed for integrations to steady state for the ca.se
including reactions (1) and (2) and for the case of

only gas phase reactions.

RESULTS

An expected major effect of both reactions (1) and

(2) is a large increase in IINO 3 (Fig. 4) at middle and
upper latitudes particularly in winter and spring,

where the rates of (1)+(2) become larger than the rate

ofOll + NO 2 + M. This is shown in Fig. 5, where in
December, the heterogeneous processes dominate
northward of about 30 ° .

As lINd 3 increases, oilier NOy family members,
particularly NO, NO 2, and N205, show a

corresponding decrease. The abundance of CIONO 2
changes little because the T for reaction (2) is fairly

small except ill the soud_em high latitude winter. The
effect on ozone of reactions (1) and (2) is 1o incre,a._e

the imporlance of the CIO x destruction catalytic
cycles while somewhat diminishing the dominant

position of tile NO x cycle between 20 and 30 kin.
"Fhc net overall effect on ozone is a slight increase of
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0.11%relativetotiletotal abundance ill the g,'ts phase
c`aqe.
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Figure 4. Derived ItNO 3 mole fraction at 62 ° N in December.

Solid line includes reaclions (I)and (2). dashed line includes (1)-

(3). dot-dash line includes only gas phase pholochemistry.

The addition of reaction (3) and tile ,associated NSA

formation and CINO photolysis reactions do not

produce significant further changes in NOy

partitioning (Fig. 4). llowever, as expected, CIO and

inclusion of reaction (3), CIONO 2 becomes the

dominant inorganic Cl-containing species. Total
ozone abundance is dcemased by about 3% relative to

the gas phase case, with the largest effects in regions
where the photochemical ozone lifetime is long and
the enhancement of CIO produces proportionately a

larger reduction ill local ozone abundance.
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Figure 6. Calculated ratio of C1ONO 2 to IIC1 in December with

NSA included. Where the value exceeds 1, CIONO 2 is the

dondnanl inorganic C'3 species.
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' |'3gure 5. Calculaled rales of llNO 3 prc_luet_on in I)ecember (tool

cm-3 s-l). (a) NO 2 + Oil + M --* IlNO 3 + M, (1}) Sum of N205 4-

1120(aero_ol) -4 2 I INO 3 and C1ONO 2 + 1120(aerosol ) --_ I IOC1

+ IINO 3.

CIONO 2 ,aresubstantially incrc`ascd between 20 and
30 km globally, while IlCI decreases, l-ig. 6 shows

that in some regions of the stratosphere, with the

CONCLUSION

This preliminary study of the effects, on trace

species distributions, of heterogeneous processes
taking place on stratospheric sulfuric acid aerosol

provides some guidance for consideration of

observations of NO v and CIO v f,'unily members. A
strong enhancement-of lINd 3 "its the partitioning in

the NO v f,'unily at winter high latitudes is an indicator
of aerosol moderated hydrolysis of N205, while NO,

NO2, and N205 arc subst,'mtially decreased. With the
proposed NSA-relalcd chcmistry, CIONO 2 is made

the major inorganic Cl-containing species in the 24-

31 km region.

Future improvelnents in our knowledge of the

thermodyn,'unic and kinctic properties of the sulfuric

acid aerosol/ll20/NOy system will allow better
model represcntation of NSA and related chemistry

than was attempted here.

Consideration of hctcrogcr.cous chemistry on or
within sulfuric acid aerosol is important for

understanding of natural and anthropogenic

influences on the stratosphcre. Comparisons to
observations of the UARS satellite and other data

may provide cvidcnce for the importance of these

processes.
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