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Abstract. In order to validate satellite measurements of at-
mospheric composition, it is necessary to understand the
range of random and systematic uncertainties inherent in the
measurements. On occasions where measurements from two
different satellite instruments do not agree within those es-
timated uncertainties, a common explanation is that the dif-
ference can be assigned to geophysical variability, i.e., dif-
ferences due to sampling the atmosphere at different times
and locations. However, the expected geophysical variability
is often left ambiguous and rarely quantified. This paper de-
scribes a case study where the geophysical variability of O3
between two satellite instruments – ACE-FTS (Atmospheric
Chemistry Experiment – Fourier Transform Spectrometer)
and OSIRIS (Optical Spectrograph and InfraRed Imaging
System) – is estimated using simulations from climate mod-
els. This is done by sampling the models CMAM (Canadian
Middle Atmosphere Model), EMAC (ECHAM/MESSy At-
mospheric Chemistry), and WACCM (Whole Atmosphere
Community Climate Model) throughout the upper tropo-
sphere and stratosphere at times and geolocations of coinci-
dent ACE-FTS and OSIRIS measurements. Ensemble mean
values show that in the lower stratosphere, O3 geophysical
variability tends to be independent of the chosen time co-
incidence criterion, up to within 12 h; and conversely, in the
upper stratosphere geophysical variation tends to be indepen-

dent of the chosen distance criterion, up to within 2000 km.
It was also found that in the lower stratosphere, at altitudes
where there is the greatest difference between air composi-
tion inside and outside the polar vortex, the geophysical vari-
ability in the southern polar region can be double of that in
the northern polar region. This study shows that the ensemble
mean estimates of geophysical variation can be used when
comparing data from two satellite instruments to optimize
the coincidence criteria, allowing for the use of more coinci-
dent profiles while providing an estimate of the geophysical
variation within the comparison results.

1 Introduction

A significant uncertainty when comparing concentrations of
trace species measured from different satellite instruments
is the difference due to the satellites sampling the atmo-
sphere at different times and locations (“coincident” mea-
surements are never truly coincident). This uncertainty can
be called “geophysical variability”, “natural variability”, or
“coincident location uncertainty” – this study uses the term
geophysical variability. Loew et al. (2017), when reviewing
the methods and techniques used in Earth observation data
validation, wrote “Collocated measurements should be close
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to each other relative to the spatiotemporal scale on which
the variability of the geophysical field becomes compara-
ble to the measurement uncertainties”, and it is assumed that
the “spatiotemporal scale” (coincidence criteria) that will re-
sult in geophysical variability on the order of the measure-
ment uncertainties is known. However, it is often the case
that validation studies involving satellite-based atmospheric
measurements will choose coincidence criteria without dis-
cussing the geophysical justification of the criteria.

There are many validation studies that try to either es-
timate or limit geophysical variability using various tech-
niques. One common method for reducing temporal variabil-
ity is to make use of chemical models in order to diurnally
scale the measurements to a common local time (e.g., Sheese
et al., 2016, and references therein). Two methods that are
similar to each other are the trajectory mapping (Morris
et al., 1995) and the target hunting techniques (Danilin et
al., 2000), which involve tracking air parcels using forward
and/or back trajectories when comparing two different data
sets. These have been shown to be reliable tools for val-
idation (e.g., Bacmeister et al., 1999; Morris et al., 2000;
Danilin et al., 2002a, b; Liu et al., 2013) without introduc-
ing large sources of uncertainty; however it can be compu-
tationally expensive to create trajectories for multiple instru-
ment data sets. Verhoelst et al. (2015) coupled a numerical
weather forecast model with an ozone tracer model to cre-
ate a high spatial-resolution observing system simulation ex-
periment (OSSE) in order to model coincident mismatch un-
certainty (as well as vertical smoothing uncertainty) between
satellite- and ground-based measurements. Although it was
shown that the OSSE could successfully represent the geo-
physical variability, as discussed by Loew et al. (2017), this
method would likely not be suitable for atmospheric targets
that exhibit greater geophysical variability than O3. Simple
statistical or chemistry models have also been used in stud-
ies to assess geophysical variability between atmospheric
measurements (e.g., Aghedo et al., 2011; Guan et al., 2013;
Toohey et al., 2013; Fassò et al., 2014; Sofieva et al., 2014;
Millán et al., 2016).

In a similar, yet simplified, approach to Verhoelst et
al. (2015), this study makes use of readily available output
from three climate models that relaxed various meteorolog-
ical fields using specified dynamics: the Canadian Middle
Atmosphere Model (CMAM), the ECHAM/MESSy (Euro-
pean Centre Hamburg general circulation model, Modular
Earth Sub-model System) Atmospheric Chemistry (EMAC)
model, and the Whole Atmosphere Community Chemistry
Model (WACCM). It is important to note that this study is
not intended to validate either the ACE-FTS (Atmospheric
Chemistry Experiment – Fourier Transform Spectrometer) or
OSIRIS (Optical Spectrograph and InfraRed Imaging Sys-
tem) O3 data products. This is a case study that makes use of
ACE-FTS and OSIRIS geolocation data and O3 products to
demonstrate how readily available data from nudged climate
models can be used to estimate large-scale geophysical vari-

ability between satellite measurements of atmospheric trace
species and how they can be used to make informed decisions
when choosing coincidence criteria in a validation study. In
this study, given the horizontal resolution of the three climate
models that were used, large-scale variability is on the order
of 200–300 km, which is on the order of the atmospheric path
length of a limb-viewing instrument at the tangent height.

The following section describes the satellite and model
data sets used in this study, and Sect. 3 describes the method-
ology for sampling the model data and how the data sets
are compared to one another. Section 4 discusses the result-
ing simulated geophysical variability and how those results
can potentially be used to help improve validation studies. A
summary is then given in Sect. 5.

2 Data descriptions

2.1 ACE-FTS on SCISAT

The ACE-FTS instrument (Bernath et al., 2005) is a so-
lar occultation instrument on board the Canadian satellite
SCISAT, which was launched into a highly inclined, non-
sun-synchronous orbit in 2003. Since February 2004, ACE-
FTS has been making observations of Earth’s limb, provid-
ing profiles of atmospheric temperature and concentrations
of over 30 trace species between altitudes of∼ 5 and 150 km.
The instrument is a high spectral-resolution (0.02 cm−1) in-
frared spectrometer detecting solar radiation between 750
and 4400 cm−1.

The O3 retrieval algorithm, described by Boone et
al. (2005, 2013), is a global least-squares fitting technique
that uses Levenberg–Marquardt iteration to converge on a
solution without the need of a priori information. Version
3.5/3.6 data are used in this study, where the forward mod-
elled spectra in 40 different microwindows between 829 and
2673 cm−1 are calculated using spectral parameters from the
HITRAN 2004 (Rothman et al., 2005) database with some
updates, as described by Boone et al. (2013). Ozone is re-
trieved between 5 and 95 km assuming horizontal homogene-
ity, and CFC-12, HCFC-22, CFC-11, N2O, CH4, HCOOH,
and H2O, along with various isotopologues, are simultane-
ously retrieved as interfering species. The reported statistical
fitting error, described by Boone et al. (2005; 2013), is typ-
ically on the order of 2 %–3 % in the 10–15 km range and
∼ 1.5 %–2 % in the 15–55 km range. Dupuy et al. (2009)
validated the ACE-FTS v2.2 ozone data set using correla-
tive data from multiple satellite, ground-based, and balloon-
based instruments, and Sheese et al. (2017) compared v3.5
O3 data to correlative satellite data. In the upper troposphere
to middle stratosphere, ACE-FTS v3.5 O3 tends to exhibit a
slight positive bias on the order of a few percent and, near
45–60 km, a positive bias on the order of 10 %–20 %.
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2.2 OSIRIS on Odin

The OSIRIS instrument (Llewellyn et al., 2004) is a limb
scatter detector on board the Odin satellite, which was
launched into a sun-synchronous orbit in 2001 with a nomi-
nal ascending node of approximately 06:00 local time. Since
November 2001, OSIRIS has been observing Earth’s limb,
producing standard data products of O3 and NO2 profiles be-
tween altitudes of ∼ 7 and 60 km, as well as various other
atmospheric research products. The optical spectrograph is
a grating spectrometer measuring between 275 and 810 nm
with a spectral resolution of ∼ 2 nm and a vertical field of
view of ∼ 1 km at the tangent point.

The O3 retrieval algorithm is described by Bourassa et
al. (2012) and uses a multiplicative algebraic reconstruction
technique (Roth et al., 2007; Degenstein et al., 2009). Ver-
sion 5.07 O3 data are used in this study, where pressure and
temperature profiles are obtained from the European Centre
for Medium-Range Weather Forecasts (ECMWF), and ozone
is retrieved in number density, taking into account UV and
visible absorption, and NO2 and aerosols are simultaneously
retrieved as interfering species. The ECMWF pressure and
temperature profiles are then used to convert the retrieved O3
densities to volume mixing ratios. The reported OSIRIS O3
uncertainties are typically on the order of 3 %–9 % in the 10–
55 km range.

Adams et al. (2013) found that the v5.07 OSIRIS data were
in excellent agreement with coincident Stratospheric Aerosol
and Gas Experiment II (SAGE II) profiles throughout the
stratosphere, typically within 5 %. Hubert et al. (2016) found
there to be a statistically significant positive drift in the
OSIRIS O3 data above 20 km with respect to ozonesonde and
lidar data. The OSIRIS drift is on the order of 1 %–3 % per
decade between ∼ 25 and 35 km and increases to 8 % per
decade near 42 km; however, this drift has been corrected in
the v5.10 release (Bourassa et al., 2018).

2.3 Model data

Three different models were used in this study: CMAM,
EMAC, and WACCM, all of which used specified dynamics
to relax, or “nudge”, different key atmospheric states (e.g.,
wind fields, temperature) to meteorological observations.

CMAM is a chemistry–climate model, described in de-
tail by de Grandpré et al. (2000), Jonsson et al. (2004), and
Scinocca et al. (2008). The CMAM30 simulation (McLan-
dress et al., 2013), used in this study, is a 30-year run of the
CMAM model with 6-hourly output from 1979 to 2010, on a
3.75◦ horizontal grid (linear T47 Gaussian grid). The model
was run with 71 vertical levels up to 0.0007 hPa (∼ 95 km)
with vertical resolution on the order of 1 km around the
tropopause, increasing to ∼ 2.5 km in the mesosphere, and
the data set used here is comprised of 6-hourly instantaneous
model fields interpolated onto 63 constant pressure surfaces
that span the full height range of the model. Below 1 hPa,

temperatures and horizontal winds were nudged to 6-hourly
values from ECMWF Interim Reanalysis (ERA-interim; Dee
et al., 2011). CMAM simulations have been used in many
studies to help understand the climatology and variations of
stratospheric O3 and its effect on climate (e.g., Gillett et al.,
2009; McLandress et al., 2011; Sakazaki et al., 2015; Froide-
vaux et al., 2019).

The global chemistry–climate model EMAC uses the gen-
eral circulation model ECHAM version 5 as its base model in
conjunction with MESSy version 2, which incorporates mul-
tiple sub-models, such as natural and anthropogenic emis-
sions, land and ocean processes and interactions, and chem-
istry and transport (Jöckel et al., 2010, 2016). The simula-
tions used in this study were on an approximate 2.8◦ hor-
izontal grid (T42), with 90 vertical levels up to 0.01 hPa
(∼ 80 km). Within the 30-year run (1980–2010), the cal-
culated divergence, vorticity, temperature, and logarithm of
surface pressure variables were nudged above the boundary
layer up to 10 hPa (with transition layers) to ERA-interim
data with nudging times between 6 and 48 h, depending on
the variable. The data used in this study were from simula-
tion RC1SD-base-10 (no nudging of global mean tempera-
ture), output every 5 h (Jöckel et al., 2016). Multiple studies
focusing on O3 variations in the troposphere and stratosphere
have used the EMAC model (e.g., Weber et al., 2011; Meul
et al., 2014; Khosrawi et al., 2017).

WACCM is a climate chemistry model and is the atmo-
spheric component of the National Center for Atmospheric
Research’s Community Earth System Model (Marsh et al.,
2013). The simulations used in this study have horizontal
resolutions of 1.9◦ latitude and 2.5◦ longitude and have 88
vertical levels up to 5.1× 10−6 hPa (∼ 140 km). The model
simulation spans 1979 to 2013, and below 50 km the temper-
ature, pressure, zonal and meridional wind, and surface stress
variables were nudged to NASA’s Modern Era Retrospective-
Analysis for Research and Applications (MERRA) reanaly-
sis data (Rienecker et al., 2011) with a 50 h relaxation time
constant. The WACCM model has been widely used to study
O3 variability throughout the atmosphere (e.g., Merkel et al.,
2011; Brakebusch et al., 2013; Chandran et al., 2014).

Another set of WACCM simulations was used in this
study, with the same setup, the only difference being that the
output model data were directly output at the ACE-FTS and
OSIRIS observation times and geolocations (individual ob-
servation profiles were assumed to be at a single time, lati-
tude, and longitude, taken as the 30 km tangent height val-
ues). The WACCM output at the instrument observed loca-
tions will from here onward be referred to as WACCMOL.

All three models used in this study are considered to be
“state-of-the-art” stratosphere-resolving chemistry–climate
models and regularly participate in multi-model intercompar-
isons, including the exhaustive model assessments performed
for CCMVal-2 (SPARC CCMVal, 2010) and CCMI-1 (Mor-
genstern et al., 2017).
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3 Methodology

In this study, altitude-dependent values of latitude and lon-
gitude were used for the measured profiles; however time
values were assumed to be constant throughout a profile,
taken as the mid-point of the measurement time. ACE-FTS
and OSIRIS profiles were considered to be coincident if
they were measured within 12 h of each other and within
2000 km. In cases of multiple coincidences with a single
profile, only the closest in latitude were chosen; hence each
ACE-FTS profile has only one coincident OSIRIS profile and
vice versa. Only data from 2004 to 2010 are used, as the lat-
est start point out of all the data sets (model and instrument)
was the ACE-FTS start of February 2004, and the CMAM
and EMAC data sets both had the same earliest end point,
December 2010.

In the following description the terms MOD and INST
are used as general terms to indicate model and instru-
ment values, respectively. The sampling of all three models
(CMAM, EMAC, and WACCM) at satellite times and lo-
cations is done using the same methodology. First, for ev-
ery instrument profile, the model O3 data closest in time to
tINST on both sides are isolated and are spline-interpolated in
log space from the native

(
tMOD, pMOD, longMOD, latMOD

)
grid to a

(
tMOD, zACE, longMOD, latMOD

)
grid, where t is

time, p is pressure, z is altitude, long is longitude, and lat
is latitude. This is done using the retrieved ACE-FTS pres-
sures, which are on a 1 km grid from 0.5 to 149.5 km. Since
OSIRIS does not retrieve atmospheric pressure, the OSIRIS
O3, time, latitude, and longitude profiles (in altitude) are
spline-interpolated to the ACE-FTS grid and assumed to have
the same pressure values as their coincident ACE-FTS pro-
file. Due to using the ACE-FTS pressures, this study can be
considered to be estimating the natural variability on com-
mon pressure levels, rather than on common altitude levels.

For each profile, the model data are then linearly inter-
polated from the

(
tMOD, zINST, longMOD, latMOD

)
grid to a(

zINST, longMOD, latMOD
)

grid at tINST. At each altitude, the(
longMOD, latMOD

)
gridded data are then bilinearly interpo-

lated to the longINST and latINST values at that altitude, us-
ing altitude-dependent geolocations (e.g., Kolonjari et al.,
2018). This leads to model O3 data sampled at the instrument
times and geolocations on a (zINST, tINST) grid. Outliers in
the ACE-FTS data are filtered out using their quality flags, as
per Sheese et al. (2015), and the corresponding data points
are also removed from the corresponding OSIRIS and model
data sets. The OSIRIS data were not filtered for outliers.

The estimated geophysical variability, as per the model
data sets, was defined to be the 2σ standard deviation of the
differences between simulated ACE-FTS values and simu-
lated OSIRIS values (at each altitude):

vgeo = 2×SD
(

MODACE
−MODOS

)
. (1)

In relative terms, the relative differences are calculated as the
differences between ACE-FTS and OSIRIS divided by the
overall mean of all ACE-FTS and OSIRIS values at that alti-
tude:

rel diffi = 2N
MODACE

i −MODOS
i∑N

j MODACE
j +MODOS

j

× 100%, (2)

where N is the number of coincident values at that altitude.
The overall mean in the denominator was used in order to
be consistent with Sheese et al. (2016, 2017), where it was
used to minimize the effect of retrieved negative values. The
relative geophysical variability was calculated as the 2σ stan-
dard deviation of the relative differences. The same equations
were used for determining the relative differences and the 2σ
variations between the actual ACE-FTS and OSIRIS mea-
surements (replacing MOD in Eqs. 1 and 2 with INST).

4 Results

4.1 Global comparisons

Coincidence criteria of within 6 h and 500 km were first
chosen, yielding the profiles of mean O3 bias (ACE-FTS –
OSIRIS) due to sampling and geophysical variability profiles
(2σ variation) shown in Fig. 1. Also shown are the profiles
of the actual measurement bias and 2σ variation of the differ-
ences at those criteria. All three models exhibit a small bias
(within 0.02 ppmv, 0.5 %) between 12 and 29 km. Between
30 and 45 km, the model results indicate that ACE-FTS O3
values are expected to be systematically lower than OSIRIS.
CMAM indicates a bias of up to ∼ 0.02 ppmv (0.5 %) in this
region, EMAC indicates a bias of up to∼ 0.06 ppmv (1.1 %),
and WACCM indicates a bias of up to 0.13 ppmv (2.8 %).
Above 48 km, all three models exhibit systematically larger
concentrations of ACE-FTS O3 than OSIRIS O3. EMAC in-
dicates a bias of up to ∼ 0.03 ppmv (2.1 %) in this region,
CMAM indicates a bias of up to 0.05 ppmv (3.9 %), and
WACCM indicates a bias of up to 0.10 ppmv (8.7 %). The
more extreme values yielded by the WACCM simulations
could in part be due to the finer horizontal resolution.

All three models agree well in terms of geophysical vari-
ability. In absolute terms, all three profiles of 2σ variation
increase from ∼ 0.1 ppmv at 10 km to on the order of 0.5–
0.6 ppmv near 30–40 km and then decrease with altitude to
∼ 0.2 ppmv near 55 km. In relative terms, all three decrease
from within 27 %–32 % near 10 km to 7 %–9 % near 21 km.
Between 21 and 52 km, the simulated geophysical variabil-
ity profiles are typically on the order of 7 %–11 %, with
WACCM exhibiting the largest variability of 12 % at 42 km.
Above 52 km, variability increases with altitude to 10 %–
12 % at 55 km.

In order to estimate the uncertainty introduced by model
sampling uncertainties (interpolation uncertainties and un-
certainties introduced by assuming ACE-FTS altitude–
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Figure 1. Measured and simulated mean differences (a, c) between ACE-FTS and OSIRIS O3 and the corresponding 2σ variability (b, d).
Profiles for all available times and latitudes with coincidence criteria of within 6 h and 500 km are used. Results shown for the differ-
ences (a, b) and relative differences (c, d).

pressure values for OSIRIS), the standard run WACCM data
that were linearly interpolated in time and bilinearly interpo-
lated to the measurement geolocations were compared with
WACCMOL profiles (i.e., profiles from a WACCM run with
output directly at the satellite observation times and geoloca-
tions). In this specific case, both WACCM and WACCMOL
assumed altitude-independent geolocations (30 km tangent
height values). Figure 2 shows the 2σ variability between co-
incident ACE-FTS and OSIRIS O3 profiles as determined by
WACCM and WACCMOL at coincidence criteria of within
6 h and 500 km. The difference in geophysical variability be-
tween WACCM and WACCMOL is typically within ±1 %
between 11 and 38 km and within ±2 % between 10 and
47 km. Above 47 km, the difference increases sharply up to
7 % near 55 km; however between 30 and 55 km that differ-
ence in absolute terms is on the order of 0.04–0.06 ppmv.
These results suggest that in the upper stratosphere the inter-
polation method may be underestimating the magnitude of
the geophysical variation.

Simulated geophysical variability can also be determined
for a range of coincidence criteria. Figure 3 shows the geo-
physical variability determined from CMAM, EMAC, and
WACCM for all time difference criteria between within 1.5 h
and within 12 h in 0.5 h increments and distance difference
criteria between within 150 km and within 2000 km in 50 km
increments. These were calculated for all three models at all

altitude levels (10–56 km), and results are shown for altitude
levels of 20.5, 40.5, and 55.5 km.

Again, all three models show very similar geophysical
variability patterns for different coincidence criteria. At the
lowest altitudes (e.g., 20.5 km), where there are relatively
small diurnal variations, for any given distance criterion,
geophysical variability tends to stay fairly constant regard-
less of the time criterion (up to within 12 h). Conversely,
for any given time criteria, geophysical variability increases
from ∼ 2 %–7 % at within 150 km to ∼ 16 %–23 % at within
2000 km. At the highest altitudes (e.g., 55.5 km), the oppo-
site effect is seen. Since there is a significant diurnal effect,
the simulated geophysical variability is fairly consistent at a
given time criterion, regardless of the distance criterion; and
at any given distance criterion, the geophysical variability
typically increases from ∼ 6 %–12 % at within 1 h to 13 %–
22 % at within 12 h. At intermediate altitudes (e.g., 40.5 km),
where there is a moderate diurnal cycle, the geophysical vari-
ability tends to increase with both time and distance criteria.
The variability increases from∼ 2 %–5 % near within 1 h and
100 km to ∼ 12 %–15 % near within 12 h and 2000 km.

The mean of all three model results was taken to give en-
semble mean values of the geophysical variability, shown in
Fig. 4. These closely resemble the results described above,
with geophysical variability being relatively independent of
the time difference criterion at the lower altitude levels, rel-
atively independent of the distance difference criterion at the
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Figure 2. Simulated 2σ variability (a) and relative 2σ variability (b) for ACE-FTS–OSIRIS-coincident O3 profiles when interpolating to
measurement geolocations from WACCM grid (black) and using WACCMOL (WACCM output at observed locations; grey). Coincidence
criteria of within 6 h and 500 km.

Figure 3. Geophysical variability (2σ ) between ACE-FTS and OSIRIS O3 derived from the simulated results of CMAM (a, d, g),
EMAC (b, e, h), and WACCM (c, f, i), at altitudes of 20.5 km (g–i), 40.5 km (d–f), and 55.5 km (a–c). Calculations performed for time
difference criteria of within 1.5 h to within 12 h in 0.5 h increments and distance difference criteria of within 150 km to within 2000 km in
50 km increments.

Atmos. Meas. Tech., 14, 1425–1438, 2021 https://doi.org/10.5194/amt-14-1425-2021
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Figure 4. Ensemble mean geophysical variability (2σ ) between ACE-FTS and OSIRIS O3, as estimated from CMAM, EMAC, and WACCM
data. Calculations performed for time difference criteria of within 1.5 to 12 h in 0.5 h increments and distance difference criteria of within
150 to 2000 km in 50 km increments. Black circles indicate the coincidence criteria optimized for the greatest number of coincident profiles
with geophysical variability limited to 10 %.

Figure 5. Comparisons between ACE-FTS and OSIRIS O3 profile measurements at coincident criteria that, at each altitude, maximize the
number of coincident profiles while keeping estimated geophysical variability below 10 %. Solid lines indicate the mean of the differences
(a: absolute values; b: relative differences), and shaded regions are the corresponding 2σ variations from the means.

higher altitude levels, and dependent on both at the inter-
mediate altitude levels. When comparing O3 measurements
between ACE-FTS and OSIRIS, these ensemble mean geo-
physical variability values can be used to optimize coinci-
dence criteria. At each altitude level, “optimized” coinci-
dence criteria can be chosen where there are the greatest
number of coincident measured profiles with the estimated
geophysical variability less than a desired value. For in-
stance, the circle markers on the plots in Fig. 4 indicate “opti-
mized criteria” where there are the greatest number of coinci-
dent ACE-FTS and OSIRIS profiles when the estimated geo-
physical variability is less than 10 %, and Fig. 5 shows results
for comparisons between ACE-FTS and OSIRIS O3 profiles
when using the optimized criteria for this chosen 10 % 2σ

variability limit at each altitude. It should be noted that in
Fig. 5, at some of the altitude levels below 17 km there were
no coincidence criteria evaluated where geophysical variabil-
ity was less than 10 %, and in those cases coincidence criteria
of within 1.5 h and 150 km were used. The coincidence cri-
teria can be optimized for any chosen limit of geophysical
variability (10 % was chosen in this case), and naturally this
could be done for any subset of seasons or latitudes within
the collocated data. However, one drawback to having dif-
ferent coincidence criteria at each altitude, especially when
making global comparisons, is that it can potentially add bi-
ases between altitudes due to changing seasonal and latitu-
dinal sampling. Therefore, care must be taken to ensure that
biases of this type are not being introduced.

https://doi.org/10.5194/amt-14-1425-2021 Atmos. Meas. Tech., 14, 1425–1438, 2021



1432 P. E. Sheese et al.: Estimations of ozone geophysical variability

Figure 6. Comparison results between ACE-FTS and OSIRIS O3 for different coincidence criteria: (a) mean of the relative differences,
(b) 2σ variation of the relative differences, and (c) number of coincident profiles. Optimized criteria are for less than 10 % geophysical
variability above 17 km and less than 15 % below 17 km.

These results can be used not only to constrain the inher-
ent geophysical variability in comparisons between satellite
measurements but also to increase the number of usable co-
incident profiles. Figure 6 shows results of comparisons be-
tween ACE-FTS and OSIRIS O3 profiles for five different
coincidence criteria: within 2 h and 250 km, within 6 h and
500 km, within 8 h and 1000 km, within 12 h and 2000 km,
and criteria optimized at each altitude. The optimized crite-
ria were such that above 17 km the maximum estimated geo-
physical variability was 10 % and below 17 km it was 15 %.
At most altitudes, the bias between the two instruments is
relatively independent of coincidence criteria and the profiles
exhibit similar variations with altitude. Above 20 km, the dif-
ferences between the biases given different coincidence cri-
teria are typically on the order of 1 %–4 %. These differences
are slightly larger below 20 km, where the maximum differ-
ence is 8 % between the 2 h and 250 km criteria and the 12 h
and 2000 km criteria. The 2σ standard deviations of the rel-
ative differences, shown in Fig. 6b, exhibit greater variabil-
ity with coincidence criteria. Between 20 and 40 km, the op-
timized criteria yield standard deviations that are typically
better than all the other criteria, with the exception of within
2 h and 250 km below 14 km and between 20 and 42 km.
However, with the criteria of 2h and 250 km only 279 coinci-
dent profiles (Fig. 5c) are being compared, whereas with the
optimized criteria, 1900–5900 profiles are used in the com-
parisons, leading to a more robust result with a consistent
estimate on the geophysical variability uncertainty. The in-
crease in coincident profiles may not be necessary in this ex-

act case where global data are being compared but would be
useful in specific regions where there are fewer coincident
profiles with which to compare. The greatest improvement
to the standard deviations is in the 13–20 km region, where
the optimized criteria lead to standard deviations on the same
order as the 2 h and 250 km criteria but making use of 2–
7 times more profiles and, again, providing an estimate on
the geophysical variability uncertainty.

4.2 Hemispheric comparisons

It is also interesting to observe the difference in geophysi-
cal variability between the polar Northern Hemisphere (NH;
poleward of 50◦ N) region and the polar Southern Hemi-
sphere (SH; poleward of 50◦ S) region, where there is greater
O3 variability in general. Figure 7 shows the same plots as
those of Fig. 4 but for polar NH and SH data. At 20.5 km, at
coincidence criteria of within 8 h and 1000 km, the ensemble
mean geophysical variability in the NH is 8 %, whereas in
the SH O3 concentrations are estimated to be over twice as
variable, at 19 %.

Figure 8 shows the difference in ensemble mean bias and
2σ geophysical variability at coincidence criteria of 8 h and
1000 km binned by hemisphere and month. It shows that, un-
surprisingly, there is a much larger difference between polar
NH and SH in the stratosphere during the end of winter than
at the beginning of summer. This is due to the stronger south-
ern polar vortex.
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Figure 7. Ensemble mean geophysical variability (2σ ) between ACE-FTS and OSIRIS O3, as estimated from CMAM, EMAC, and WACCM
data: (a–c) for 50–90◦ N and (d–f) for 50–90◦ S. Calculations performed for time difference criteria of within 1.5 h to within 12 h in 0.5 h
increments and distance difference criteria of within 150 km to within 2000 km in 50 km increments. Black circles indicate the coincidence
criteria optimized for the greatest number of coincident profiles with geophysical variability limited to 10 %.

Figure 8. Ensemble mean bias (a) and 2σ geophysical variability (b) between ACE-FTS and OSIRIS O3 in the polar regions at coincidence
criteria of within 8 h and 1000 km, as estimated from CMAM, EMAC, and WACCM data.

Above 15 km in the summer months, when there is not a
strong polar vortex, the NH and SH exhibit similar geophys-
ical variability profiles, with variability on the order of 5 %–
15 %. In the same altitude region in the SH spring, geophysi-
cal variability is much larger, due to the strong and prevalent
southern polar vortex, which is just starting to break up with
the onset of sunlight; and at laxer coincidence criteria, it is

more likely that one instrument will be observing inside the
southern polar vortex and the other outside the vortex, which
can have different atmospheric conditions. The variability is
on the order of 15 %–20 % above 22 km and peaks at 35 %
near 18 km, where there is some of the most ozone depletion.
As can be seen in Fig. 7a and d, in the lower stratosphere in
the polar SH, the geophysical variability is more sensitive to
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Figure 9. The bias (a) and 2σ variability (b) of the relative differences between ACE-FTS and OSIRIS O3 profiles in the southern polar
region at different coincidence criteria, including the optimized criteria for 10 % variability above 17 km and 15 % below 17 km and the
corresponding number of coincident profiles (c).

the time coincidence criterion than in the polar NH. The NH
geophysical variability above 30 km is also greater at the end
of winter (∼ 5 %–10 %) than during the summer (∼ 10 %–
15 %). This could be due to stronger planetary wave forcing
in the NH (e.g., Butchart, 2014; de la Cámara et al., 2018)
and/or stronger descent of NO and NO2 following sudden
stratospheric warming events (e.g., Reddmann et al., 2010).

Figure 9 shows the estimated bias and the mean 2σ vari-
ability of the relative differences between ACE-FTS and
OSIRIS O3 profiles in the polar SH for different coincidence
criteria, including the optimized criteria for 10 % geophysi-
cal variability above 17 km and 15 % below 17 km. As with
the global comparisons, the bias is largely unaffected by the
choice of coincidence criteria. Between 20 and 42 km, all
the coincidence criteria lead to similar variability profiles on
the order of 15 %–20 %. Below 20 km, the optimized crite-
ria tend to yield better variability results than the criteria of
within 6 h and greater; however, they yield larger values than
the 2 h and 250 km criteria. The benefits of the optimized cri-
teria case in this region are that there is a consistent estimate
of the geophysical variability and that it makes use of more
coincident profiles – the 2 h and 250 km criteria have a maxi-
mum of only 54 profiles, whereas the optimized criteria make
use of up to 307 profiles near 15 km.

5 Summary

This study used three different chemistry–climate models –
CMAM, EMAC, and WACCM – that were run in specified-
dynamics mode; i.e., meteorological fields were nudged to-
wards observational data. The O3 data from these models
were sampled at ACE-FTS and OSIRIS times and locations

in order to estimate the geophysical variation (as character-
ized by the 2σ standard deviation of differences) inherent in
the satellite O3 comparisons at varying coincidence criteria.
The averages of the simulated values were taken in order to
obtain ensemble mean values of the geophysical variation.
Based on the differences in the estimated geophysical vari-
ation between WACCM and WACCMOL (WACCM output
at observed locations), the interpolation method used in this
study yields the most accurate results in the lower to mid-
stratosphere, up to ∼ 25 km. Above 30 km the interpolation
may lead to an underestimation of the geophysical variability
on the order of 0.04–0.06 ppmv (a relative difference of up to
23 %).

When analyzing the global data, all three models show
similar geophysical variability patterns based on coincidence
criteria. In the lower stratosphere, the geophysical varia-
tion is, within the criteria limits, relatively independent of
the time criterion and increases as the distance criterion is
widened. In the upper stratosphere, where there is a stronger
O3 diurnal cycle, the geophysical variation tends to be inde-
pendent of the distance criterion and increases when the time
criterion is increased. In the middle stratosphere, the geo-
physical variation tends to increase with increasing time and
distance criteria. Ensemble mean values in the lower strato-
sphere show that geophysical variability is much larger in
the high-latitude SH than in the high-latitude NH, except at
very tight criteria (e.g., within 2 h and 200 km). This is due
to the more consistent presence of the southern polar vortex,
which often leads to coincident ACE-FTS and OSIRIS mea-
surements sampling two different air masses (inside and out-
side the vortex). On average in the NH, geophysical variation
decreases more strongly with altitude from 24 % at 12 km to
8 % at 20 km, whereas in the SH, geophysical variation is
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28 % at 17 km and 20 % at 20 km. Also, in the polar SH in
the lower stratosphere, geophysical variability does not tend
to be time independent.

When comparing profiles from satellite data, the ensemble
means of the simulated geophysical variability can be used to
optimize the chosen coincidence criteria, allowing for a large
number of coincident profiles while limiting the estimated
variability to a desired quantity (on the scale of the measure-
ment uncertainties). This method allows for relatively sim-
ple, consistent estimates of geophysical variability inherent
in the comparison results and allows for making use of more
coincident profiles, which is an advantage for solar occulta-
tion instruments that tend to have fewer observation profiles
than sensors using other limb-viewing techniques. However,
this does lead to different measurement times or locations
being compared at different altitude levels and therefore care
must be taken such that it does not lead to regional and/or
seasonal sampling differences in the profiles of the compar-
ison results, which could add spurious features. This tech-
nique of using the natural variability estimates in order to
optimize the coincidence criteria can, however, also be used
for data that are isolated to a single season or latitude range.

Data availability. The sampled data sets and simulations used for
these analyses are available (https://doi.org/10.5683/SP2/ZHGQOI,
Sheese et al., 2020). The ACE-FTS Level 2 data can be
obtained via the ACE-FTS website (registration required):
http://www.ace.uwaterloo.ca (last access: 21 January 2021). The
OSIRIS data can be obtained via http://odin-osiris.usask.ca
(registration required, last access: 21 January 2021;
https://doi.org/10.5281/zenodo.4110053, Roth, 2020). The
CMAM30 data set can be downloaded via Environment
and Climate Change Canada’s climate modelling website:
https://climate-modelling.canada.ca/climatemodeldata/cmam/
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