105 research outputs found

    The Kinematic Properties of BHB and RR Lyrae stars towards the Anticentre and the North Galactic Pole: The Transition between the Inner and the Outer Halo

    Full text link
    We identify 51 blue horizontal branch (BHB) stars, 12 possible BHB stars and 58 RR Lyrae stars in Anticentre fields. Their selection does not depend on their kinematics. Light curves and ephemerides are given for 7 previously unknown RR Lyrae stars. All but 4 of the RR Lyrae stars are of Oosterhoff type I. Our selection criteria for BHB stars give results that agree with those used by Smith et al. (2010) and Ruhland et al. (2011). We use 5 methods to determine distances for the BHB stars and 3 methods for the RR Lyrae stars to get distances on a uniform scale. Absolute proper motions (largely derived from the GSCII and SDSS (DR7) databases) are given for these stars; radial velocities are given for 31 of the BHB stars and 37 of the RR Lyrae stars. Combining these data for BHB and RR Lyrae stars with those previously found in fields at the North Galactic Pole, we find that retrograde orbits dominate for galactocentric distances greater than 12.5 kpc. The majority of metal-poor stars in the solar neighbourhood are known to be concentrated in a Lperp vs. Lz angular momentum plot. We show that the ratio of the number of outliers to the number in the main concentration increases with galactocentric distance. The location of these outliers with Lperp and Lz shows that the halo BHB and RR Lyrae stars have more retrograde orbits and a more spherical distribution with increasing galactocentric distance. Six RR Lyrae stars are identified in the H99 group of outliers; the small spread in their [Fe/H] suggests that they could have come from a single globular cluster. Another group of outliers contains two pairs of RR Lyrae stars; the stars in each pair have similar properties.Comment: 40 pages, 19 figures, to be published in MNRA

    Kinematic Structure in the Galactic Halo at the North Galactic Pole: RR Lyrae and BHB Stars show different kinematics

    Get PDF
    Space motions are given for 38 RR Lyrae (RRL) stars and 79 blue horizontal branch (BHB) stars in a ~200 deg2 area around the North Galactic Pole (NGP) using a homogeneous distance scale consistent with (m-M)0=18.52 for the LMC. The kinematics of the 26 RRL and 52 BHB stars in the 10.4 cubic kpc volume that have Z<8 kpc are not homogeneous. Our BHB sample (like that of Sirko et al. 2004b) has a zero galactic rotation (V_phi) and roughly isotropic velocity dispersions. The RRL sample shows a definite retrograde rotation (V_phi = -95+/-29 km/s) and non-isotropic velocity dispersions. The combined BHB and RRL sample has a retrograde galactic rotation (V) that is similar to that found by Majewski (1992) for his sample of subdwarfs in SA 57. The velocity dispersion of the RRL stars that have a positive W motion is significantly smaller than the dispersion of those "streaming down" with a negative W. One component of our sample (rich in RRL's) shows retrograde rotation and the streaming motion that we associate with the accretion process. The other (traced by the BHB stars) shows essentially no rotation and less evidence of streaming. These two components have HB morphologies that suggest that they may be the field star equivalents of the young and old halo globular clusters respectively.Comment: Accepted for publication on MNRAS. 20 pages, 7 figures, 12 table

    Amplitude Fine-Structure in the Cepheid P-L Relation I: Amplitude Distribution Across the RR Lyrae Instability Strip Mapped Using the Accessibility Restriction Imposed by the Horizontal Branch

    Full text link
    The largest amplitude light curves for both RR Lyrae (RRL) variables and classical Cepheids with periods less than 10 days and greater than 20 days occur at the blue edge of the respective instability strips. It is shown that the equation for the decrease in amplitude with penetration into the strip from the blue edge, and hence the amplitude fine structure within the strip, is the same for RRL and the Cepheids despite their metallicity differences. However, the manifestation of this identity is different between the two classes of variables because the sampling of the RRL strip is restricted by the discrete strip positions of the horizontal branch, a restriction that is absent for the Cepheids in stellar aggregates with a variety of ages. To show the similarity of the strip amplitude fine structure for RRL and Cepheids we make a grid of lines of constant amplitude in the HR diagram of the strip using amplitude data for classical Cepheids in the Galaxy, LMC, and SMC. The model implicit in the grid, that also contains lines of constant period, is used to predict the correlations between period, amplitude, and color for the two Oosterhoff RRL groups in globular clusters. The good agreement of the predictions with the observations using the classical Cepheid amplitude fine structure also for the RRL shows one aspect of the unity of the pulsation processes between the two classes of variables.Comment: 24 pages, 3 tables, 5 figures, submitted to The Astrophysical Journa

    Fashionably Late? Building up the Milky Way's Inner Halo

    Full text link
    Using a sample of 248 metal-poor stars (RR Lyraes, red giants and RHB stars) which is remarkable for the accuracy of its 6-D kinematical data, we find a new component for the local halo which has an axial ratio c/a ~ 0.2, a similar flattening to the thick disk. It has a small prograde rotation but is supported by velocity anisotropy, and contains more intermediate-metallicity stars (with -1.5 < [Fe/H] < -1.0) than the rest of our sample. We suggest that this component was formed quite late, during or after the formation of the disk. It formed either from the gas that was accreted by the last major mergers experienced by the Galaxy, or by dynamical friction of massive infalling satellite(s) with the halo and possibly the stellar disk or thick disk. The remainder of the stars in our sample exhibit a clumpy distribution in energy and angular momentum, suggesting that the early, chaotic conditions under which the inner halo formed were not violent enough to erase the record of their origins. The clumpy structure suggests that a relatively small number of progenitors were responsible for building up the inner halo, in line with theoretical expectations. We find a difference in mean binding energy between the RR Lyrae variables and the red giants in our sample, suggesting that more of the RR Lyraes in the sample belong to the outer halo, and that the outer halo may be somewhat younger, as first suggested by Searle and Zinn (1978). We also find that the RR Lyrae mean rotation is more negative than the red giants, which is consistent with the recent result of Carollo et al.(2007) that the outer halo has a retrograde rotation and with the difference in kinematics seen between RR Lyraes and BHB stars by Kinman et al.(2007).Comment: 16 pages, 10 figures, this version accepted by Ap

    The distance of M33 and the stellar population in its outskirts

    Full text link
    We present deep V,I photometry of two $9.4' x 9.4' field in the outer regions of the M33 galaxy. We obtain a robust detection of the luminosity of the Red Giant Branch Tip (I{TRGB}=20.72 +- 0.08) from which we derived a new estimate of the distance modulus of M33, (m-M)_0=24.64 +- 0.15, corresponding to a distance D=847 +- 60 Kpc. By comparison of the color and magnitude of the observed Red Giant Branch stars with ridge lines of template globular clusters we obtained the photometric metallicity distribution of the considered fields in three different metallicity scales. The derived metallicity distributions are very similar over a range of distances from the galactic center 10' <= R <= 33', and are characterized by a well defined peak at [M/H] ~ -0.7 ([Fe/H] ~ -1.0, in the Zinn & West scale) and a weak metal-poor tail reaching [M/H] ~ -2.0. Our observations demonstrate that Red Giant Branch and Asymptotic Giant Branch stars have a radial distribution that is much more extended than the young MS stars associated with the star-forming disc.Comment: 10 pages,10 figures,accepted for publication in Astronomy & Astrophysic

    Discovery of a Variable Star Population in NGC 2808

    Full text link
    We have applied the image subtraction method to images of the peculiar, bimodal-horizontal branch globular cluster NGC 2808, taken over a total of six nights over a range of five months. As a result, we have found, for the first time, a sizeable population of variable stars in the crowded inner regions of the cluster, thus raising the known RR Lyrae population in the cluster to a total of 18 stars. In addition, an eclipsing binary and two other variables with periods longer than 1 day were also found. Periods, positions and (differential) light curves are provided for all the detected variables. The Oosterhoff classification of NGC 2808, which has recently been associated with a previously unknown dwarf galaxy in Canis Major, is briefly discussed.Comment: 8 pages, 4 figures. A&A, in pres

    Study of Globular Cluster M53: new variables, distance, metallicity

    Full text link
    We study the variable star content of the globular cluster M53 to compute the physical parameters of the constituting stars and the distance of the cluster. Covering two adjacent seasons in 2007 and 2008, new photometric data are gathered for 3048 objects in the field of M53. By using the OIS method and subsequently TFA, we search for variables in the full sample by using DFT and BLS methods. We select variables based on the statistics related to these methods combined with visual inspections. We identified 12 new variables (2 RR Lyrae stars, 7 short periodic stars - 3 of them are SX Phe stars - and 3 long-period variables). No eclipsing binaries were found in the present sample. Except for the 3 (hitherto unknown) Blazhko RR Lyrae stars, no multiperiodic variables were found. We showed that after proper period shift, the PLC relation for the first overtone RR Lyrae sample tightly follows the one spanned by the fundamental stars. Furthermore, the slope is in agreement with the one derived from other clusters. Based on the earlier Baade-Wesselink calibration of the PLC relations, the derived reddening-free distance modulus of M53 is 16.31 +/- 0.04 mag, corresponding to a distance modulus of 18.5 mag for the Large Magellanic Cloud. From the Fourier parameters of the RRab stars we obtained an average iron abundance of -1.58 +/- 0.03. This is ~0.5 dex higher than the overall abundance of the giants as given in the literature and derived in this paper from the three-color photometry of giants. We suspect that the source of this discrepancy (observable also in other, low-metallicity clusters) is the want of sufficient number of low-metallicity objects in the calibrating sample of the Fourier method.Comment: Accepted for publication in Astronomy & Astrophysics. The paper contains 5 tables and 13 figure

    Two Stellar Components in the Halo of the Milky Way

    Full text link
    The halo of the Milky Way provides unique elemental abundance and kinematic information on the first objects to form in the Universe, which can be used to tightly constrain models of galaxy formation and evolution. Although the halo was once considered a single component, evidence for its dichotomy has slowly emerged in recent years from inspection of small samples of halo objects. Here we show that the halo is indeed clearly divisible into two broadly overlapping structural components -- an inner and an outer halo -- that exhibit different spatial density profiles, stellar orbits and stellar metallicities (abundances of elements heavier than helium). The inner halo has a modest net prograde rotation, whereas the outer halo exhibits a net retrograde rotation and a peak metallicity one-third that of the inner halo. These properties indicate that the individual halo components probably formed in fundamentally different ways, through successive dissipational (inner) and dissipationless (outer) mergers and tidal disruption of proto-Galactic clumps.Comment: Two stand-alone files in manuscript, concatenated together. The first is for the main paper, the second for supplementary information. The version is consistent with the version published in Natur

    Long-Term V-Band Monitoring of the Bright Stars of M33 at the Wise Observatory

    Get PDF
    We have conducted a long-term V-band photometric monitoring of M33 on 95 nights during four observing seasons (2000 - 2003). A total number of 6418 lightcurves of bright objects in the range of 14 - 21 mag have been obtained. All measurements are publicly available. A total of 127 new variables were detected, of which 28 are periodic. Ten previously known non-periodic variables were identified as periodic, 3 of which are Cepheids, and another previously known periodic variable was identified as an eclipsing binary. Our derived periods range from 2.11 to almost 300 days. For 50 variables we have combined our observations with those of the DIRECT project, obtaining lightcurves of up to 500 measurements, with a time-span of ~7 years. We have detected a few interesting variables, including a 99.3 day periodic variable with a 0.04 mag amplitude, at the position of SNR 19.Comment: 29 pages, accepted for publication in MNRAS. Additional material is available at http://wise-obs.tau.ac.il/~shporer/m33

    HST Snaphot Study of Variable Stars in Globular Clusters: Inner Region of NGC 6441

    Full text link
    [Abridged] We present the results of a Hubble Space Telescope snapshot program to survey the inner region of the globular cluster NGC 6441 for its variable stars. A total of 57 variable stars was found including 38 RR Lyrae stars, 6 Population II Cepheids, and 12 long period variables. Of the RR Lyrae stars observed in this survey, 26 are pulsating in the fundamental mode with a mean period of 0.753d and 12 are first-overtone mode pulsators with a mean period of 0.365d. These values match up very well with those found in ground-based surveys. Combining all the available data for NGC 6441, we find mean periods of 0.759d and 0.375d for the RRab and RRc stars, respectively. We also find that the RR Lyrae in this survey are located in the same regions of a period-amplitude diagram as those found in ground-based surveys. Although NGC 6441 is a metal-rich globular cluster, its RR Lyrae more closely resemble those in Oosterhoff type II globular clusters. However, even compared to typical Oosterhoff type II systems, the mean period of its RRab stars is unusually long. We also derived I-band period-luminosity relations for the RR Lyrae stars. Of the six Population II Cepheids, five are of W Virginis type and one is a BL Herculis variable stars. This makes NGC 6441, along with NGC 6388, the most metal-rich globular cluster known to contain these types of variable stars. Another variable, V118, may also be a Population II Cepheid given its long period and its separation in magnitude from the RR Lyrae stars. We argue that there does not appear to be a change in the period-luminosity relation slope between the BL Herculis and W Virginis stars, but that a change of slope does occur when the RV Tauri stars are added to the period-luminosity relation.Comment: 28 pages, including 9 figures and 8 tables, emulateapj5/apjfonts style. Accepted by the Astronomical Journal. Approximate publication date September 2003. We recommend the interested reader to download the preprint with full-resolution figures, which can be found at http://www.astro.puc.cl/~mcatelan/Pritzl.zi
    • …
    corecore