113 research outputs found

    A rapid phenotype change in the pathogen Perkinsus marinus was associated with a historically significant marine disease emergence in the eastern oyster

    Get PDF
    The protozoan parasite Perkinsus marinus, which causes dermo disease in Crassostrea virginica, is one of the most ecologically important and economically destructive marine pathogens. The rapid and persistent intensification of dermo in the USA in the 1980s has long been enigmatic. Attributed originally to the effects of multi-year drought, climatic factors fail to fully explain the geographic extent of dermo’s intensification or the persistence of its intensified activity. Here we show that emergence of a unique, hypervirulent P. marinus phenotype was associated with the increase in prevalence and intensity of this disease and associated mortality. Retrospective histopathology of 8355 archival oysters from 1960 to 2018 spanning Chesapeake Bay, South Carolina, and New Jersey revealed that a new parasite phenotype emerged between 1983 and 1990, concurrent with major historical dermo disease outbreaks. Phenotypic changes included a shortening of the parasite’s life cycle and a tropism shift from deeper connective tissues to digestive epithelia. The changes are likely adaptive with regard to the reduced oyster abundance and longevity faced by P. marinus after rapid establishment of exotic pathogen Haplosporidium nelsoni in 1959. Our findings, we hypothesize, illustrate a novel ecosystem response to a marine parasite invasion: an increase in virulence in a native parasite

    Evaluating the Ability of Constructed Intertidal Eastern Oyster (\u3ci\u3eCrassostrea virginica\u3c/i\u3e) Reefs to Address Shoreline Erosion in South Carolina

    Get PDF
    The application of nature-based solutions to address shoreline erosion and the loss of salt marsh in coastal South Carolina has centered around the creation of intertidal oyster (Crassostrea virginica) reefs that act as natural breakwaters. The installation of such living shoreline materials often results in a rapid accumulation of fine sediments, followed by wild oyster recruitment to suitable materials, and then more gradually the growth of salt marshes (primarily Spartina alterniflora). Leveraging more than two decades of oyster reef restoration and living shorelines research at the South Carolina Department of Natural Resources, this study quantitatively assessed performance rates for both percent oyster cover and marsh protection in relation to reef age. Determining such rates will serve to inform the expectations of prospective adopters of living shorelines as to the timeframes of some of the biological processes, as measures of performance success, that will occur following material installation. Performance success was investigated in terms of recruitment of oysters to installed materials and the creation of new marsh habitat or protection of existing marsh from erosion. Reef age was an important determinant of reef “success”, with significant relationships between reef age and both performance success metrics. Percent oyster cover reached 40% by two years post-installation and 50% by four years post-installation, indicative of high rates of oyster recruitment. The relative marsh protection rate of living shorelines compared to unprotected reference plots was 0.4 m yr-1 Reef performance differed based on bank substrate firmness, bank width, shoreline morphology, and location relative to the Intracoastal Waterway (ICW). Firmer bank substrate was associated with greater percent oyster cover. Broader bank width was associated with greater marsh protection. Higher percent oyster cover measurements were observed on straight, natural shorelines and reefs located along the ICW. Reefs located on the ICW were also associated with greater marsh protection than reefs at non-ICW sites. Further, this study demonstrates that bagged oyster shell reefs are capable of providing shoreline protection services for more than a decade and can endure multiple intense storm events. The results of this study were also used to facilitate the implementation of new living shoreline regulations in coastal South Carolina in the hope of broadening adoption of this approach to addressing shoreline erosion and salt marsh habitat loss

    Serum methylarginines and spirometry-measured lung function in older adults

    Get PDF
    Rationale: Methylarginines are endogenous nitric oxide synthase inhibitors that have been implicated in animal models of lung disease but have not previously been examined for their association with spirometric measures of lung function in humans. Objectives: This study measured serum concentrations of asymmetric and symmetric dimethylarginine in a representative sample of older community-dwelling adults and determined their association with spirometric lung function measures. Methods: Data on clinical, lifestyle, and demographic characteristics, methylated arginines, and L-arginine (measured using LC-MS/MS) were collected from a population-based sample of older Australian adults from the Hunter Community Study. The five key lung function measures included as outcomes were Forced Expiratory Volume in 1 second, Forced Vital Capacity, Forced Expiratory Volume in 1 second to Forced Vital Capacity ratio, Percent Predicted Forced Expiratory Volume in 1 second, and Percent Predicted Forced Vital Capacity. Measurements and Main Results: In adjusted analyses there were statistically significant independent associations between a) higher asymmetric dimethylarginine, lower Forced Expiratory Volume in 1 second and lower Forced Vital Capacity; and b) lower L-arginine/asymmetric dimethylarginine ratio, lower Forced Expiratory Volume in 1 second, lower Percent Predicted Forced Expiratory Volume in 1 second and lower Percent Predicted Forced Vital Capacity. By contrast, no significant associations were observed between symmetric dimethylarginine and lung function. Conclusions: After adjusting for clinical, demographic, biochemical, and pharmacological confounders, higher serum asymmetric dimethylarginine was independently associated with a reduction in key measures of lung function. Further research is needed to determine if methylarginines predict the decline in lung function

    Detection of Cosmic Structures using the Bispectrum Phase. II. First Results from Application to Cosmic Reionization Using the Hydrogen Epoch of Reionization Array

    Get PDF
    Characterizing the epoch of reionization (EoR) at z6z\gtrsim 6 via the redshifted 21 cm line of neutral Hydrogen (HI) is critical to modern astrophysics and cosmology, and thus a key science goal of many current and planned low-frequency radio telescopes. The primary challenge to detecting this signal is the overwhelmingly bright foreground emission at these frequencies, placing stringent requirements on the knowledge of the instruments and inaccuracies in analyses. Results from these experiments have largely been limited not by thermal sensitivity but by systematics, particularly caused by the inability to calibrate the instrument to high accuracy. The interferometric bispectrum phase is immune to antenna-based calibration and errors therein, and presents an independent alternative to detect the EoR HI fluctuations while largely avoiding calibration systematics. Here, we provide a demonstration of this technique on a subset of data from the Hydrogen Epoch of Reionization Array (HERA) to place approximate constraints on the brightness temperature of the intergalactic medium (IGM). From this limited data, at z=7.7z=7.7 we infer "1σ1\sigma" upper limits on the IGM brightness temperature to be 316\le 316 "pseudo" mK at κ=0.33\kappa_\parallel=0.33 "pseudo" hh Mpc1^{-1} (data-limited) and 1000\le 1000 "pseudo" mK at κ=0.875\kappa_\parallel=0.875 "pseudo" hh Mpc1^{-1} (noise-limited). The "pseudo" units denote only an approximate and not an exact correspondence to the actual distance scales and brightness temperatures. By propagating models in parallel to the data analysis, we confirm that the dynamic range required to separate the cosmic HI signal from the foregrounds is similar to that in standard approaches, and the power spectrum of the bispectrum phase is still data-limited (at 106\gtrsim 10^6 dynamic range) indicating scope for further improvement in sensitivity as the array build-out continues.Comment: 22 pages, 12 figures (including sub-figures). Published in PhRvD. Abstract may be slightly abridged compared to the actual manuscript due to length limitations on arXi

    What does an interferometer really measure? Including instrument and data characteristics in the reconstruction of the 21cm power spectrum

    Full text link
    Combining the visibilities measured by an interferometer to form a cosmological power spectrum is a complicated process in which the window functions play a crucial role. In a delay-based analysis, the mapping between instrumental space, made of per-baseline delay spectra, and cosmological space is not a one-to-one relation. Instead, neighbouring modes contribute to the power measured at one point, with their respective contributions encoded in the window functions. To better understand the power spectrum measured by an interferometer, we assess the impact of instrument characteristics and analysis choices on the estimator by deriving its exact window functions, outside of the delay approximation. Focusing on HERA as a case study, we find that observations made with long baselines tend to correspond to enhanced low-k tails of the window functions, which facilitate foreground leakage outside the wedge, whilst the choice of bandwidth and frequency taper can help narrow them down. With the help of simple test cases and more realistic visibility simulations, we show that, apart from tracing mode mixing, the window functions can accurately reconstruct the power spectrum estimator of simulated visibilities. We note that the window functions depend strongly on the chromaticity of the beam, and less on its spatial structure - a Gaussian approximation, ignoring side lobes, is sufficient. Finally, we investigate the potential of asymmetric window functions, down-weighting the contribution of low-k power to avoid foreground leakage. The window functions presented in this work correspond to the latest HERA upper limits for the full Phase I data. They allow an accurate reconstruction of the power spectrum measured by the instrument and can be used in future analyses to confront theoretical models and data directly in cylindrical space.Comment: 18 pages, 18 figures, submitted to MNRAS. Comments welcome

    Characterization Of Inpaint Residuals In Interferometric Measurements of the Epoch Of Reionization

    Full text link
    Radio Frequency Interference (RFI) is one of the systematic challenges preventing 21cm interferometric instruments from detecting the Epoch of Reionization. To mitigate the effects of RFI on data analysis pipelines, numerous inpaint techniques have been developed to restore RFI corrupted data. We examine the qualitative and quantitative errors introduced into the visibilities and power spectrum due to inpainting. We perform our analysis on simulated data as well as real data from the Hydrogen Epoch of Reionization Array (HERA) Phase 1 upper limits. We also introduce a convolutional neural network that capable of inpainting RFI corrupted data in interferometric instruments. We train our network on simulated data and show that our network is capable at inpainting real data without requiring to be retrained. We find that techniques that incorporate high wavenumbers in delay space in their modeling are best suited for inpainting over narrowband RFI. We also show that with our fiducial parameters Discrete Prolate Spheroidal Sequences (DPSS) and CLEAN provide the best performance for intermittent ``narrowband'' RFI while Gaussian Progress Regression (GPR) and Least Squares Spectral Analysis (LSSA) provide the best performance for larger RFI gaps. However we caution that these qualitative conclusions are sensitive to the chosen hyperparameters of each inpainting technique. We find these results to be consistent in both simulated and real visibilities. We show that all inpainting techniques reliably reproduce foreground dominated modes in the power spectrum. Since the inpainting techniques should not be capable of reproducing noise realizations, we find that the largest errors occur in the noise dominated delay modes. We show that in the future, as the noise level of the data comes down, CLEAN and DPSS are most capable of reproducing the fine frequency structure in the visibilities of HERA data.Comment: 26 pages, 18 figure

    Direct Optimal Mapping Image Power Spectrum and its Window Functions

    Full text link
    The key to detecting neutral hydrogen during the epoch of reionization (EoR) is to separate the cosmological signal from the dominating foreground radiation. We developed direct optimal mapping (Xu et al. 2022) to map interferometric visibilities; it contains only linear operations, with full knowledge of point spread functions from visibilities to images. Here we present an FFT-based image power spectrum and its window functions based on direct optimal mapping. We use noiseless simulation, based on the Hydrogen Epoch of Reionization Array (HERA) Phase I configuration, to study the image power spectrum properties. The window functions show <1011<10^{-11} power leakage from the foreground-dominated region into the EoR window; the 2D and 1D power spectra also verify the separation between the foregrounds and the EoR. Furthermore, we simulated visibilities from a uvuv-complete array and calculated its image power spectrum. The result shows that the foreground--EoR leakage is further suppressed below 101210^{-12}, dominated by the tapering function sidelobes; the 2D power spectrum does not show signs of the horizon wedge. The uvuv-complete result provides a reference case for future 21cm cosmology array designs.Comment: Submitted to Ap
    corecore