1,091 research outputs found

    Efficient high power operation of erbium 3 µm fibre laser diode-pumped at 975 nm

    Get PDF
    Efficient CW operation of a 2.71 um Er,Pr:ZBLAN double-clad fibre laser pumped with a single diode laser operating at a wavelength of 975 nm is described. A maximum output power of 0.5 W and a slope efficiency of 25% (with respect to the launched pump power) were obtained. Threshold pump powers of < 200 mW launched were measured and consistent relaxation oscillations in the output from the fibre laser indicate the presence of a saturable absorption mechanism

    The application of optical coherence tomography to image subsurface tissue structure of Antarctic krill Euphausia superba

    Get PDF
    Many small open ocean animals, such as Antarctic krill, are an important part of marine ecosystems. To discover what will happen to animals such as krill in a changing ocean, experiments are run in aquaria where conditions can be controlled to simulate water characteristics predicted to occur in the future. The response of individual animals to changing water conditions can be hard to observe, and with current observation techniques it is very difficult to follow the progress of an individual animal through its life. Optical coherence tomography (OCT) is an optical imaging technique that allows images at high resolution to be obtained from depths up to a few millimeters inside biological specimens. It is compatible with in vivo imaging and can be used repeatedly on the same specimens. In this work, we show how OCT may be applied to post mortem krill samples and how important physiological data such as shell thickness and estimates of organ volume can be obtained. Using OCT we find an average value for the thickness of krill exoskeleton to be (30±4) µm along a 1 cm length of the animal body. We also show that the technique may be used to provide detailed imagery of the internal structure of a pleopod joint and provide an estimate for the heart volume of (0.73±0.03) mm3

    The use of small angle neutron scattering with contrast matching and variable adsorbate partial pressures in the study of porosity in activated carbons

    Get PDF
    The porosity of a typical activated carbon is investigated with small angle neutron scattering (SANS), using the contrast matching technique, by changing the hydrogen/deuterium content of the absorbed liquid (toluene) to extract the carbon density at different scattering vector (Q) values and by measuring the p/p0 dependence of the SANS, using fully deuterated toluene. The contrast matching data shows that the apparent density is Q-dependent, either because of pores opening near the carbon surface during the activation processor or changes in D-toluene density in nanoscale pores. For each p/p0 value, evaluation of the Porod Invariant yields the fraction of empty pores. Hence, comparison with the adsorption isotherm shows that the fully dry powder undergoes densification when liquid is added. An algebraic function is developed to fit the SANS signal at each p/p0 value hence yielding the effective Kelvin radii of the liquid surfaces as a function of p/p0. These values, when compared with the Kelvin Equation, show that the resultant surface tension value is accurate for the larger pores but tends to increase for small (nanoscale) pores. The resultant pore size distribution is less model-dependent than for the traditional methods of analyzing the adsorption isotherms

    HIGHLY EFFICIENT SINGLE-LONGITUDINAL-MODE BETA-BAB2O4 OPTICAL PARAMETRIC OSCILLATOR WITH A NEW CAVITY DESIGN

    Get PDF
    A new coupled-cavity design for single-longitudinal-mode operation of an optical parametric oscillator (OPO) is presented. The OPO is based on a beta-BaB2O4 crystal and is pumped by the third harmonic of a Nd:YAG laser. With this design, we achieved single-longitudinal-mode operation of the OPO with a decrease in the threshold and an increase in external efficiency compared with those of a conventional grazing-incidence OPO. A mathematical model that describes the mode spacings for this cavity is given. (C) 1995 Optical Society of Americ

    Deriving a preference-based utility measure for cancer patients from the European Organisation for the Research and Treatment of Cancer's Quality of Life Questionnaire C30: a confirmatory versus exploratory approach

    Get PDF
    Background: Multi attribute utility instruments (MAUIs) are preference-based measures that comprise a health state classification system (HSCS) and a scoring algorithm that assigns a utility value to each health state in the HSCS. When developing a MAUI from a health-related quality of life (HRQOL) questionnaire, first a HSCS must be derived. This typically involves selecting a subset of domains and items because HRQOL questionnaires typically have too many items to be amendable to the valuation task required to develop the scoring algorithm for a MAUI. Currently, exploratory factor analysis (EFA) followed by Rasch analysis is recommended for deriving a MAUI from a HRQOL measure. Aim: To determine whether confirmatory factor analysis (CFA) is more appropriate and efficient than EFA to derive a HSCS from the European Organisation for the Research and Treatment of Cancer’s core HRQOL questionnaire, Quality of Life Questionnaire (QLQ-C30), given its well-established domain structure. Methods: QLQ-C30 (Version 3) data were collected from 356 patients receiving palliative radiotherapy for recurrent/metastatic cancer (various primary sites). The dimensional structure of the QLQ-C30 was tested with EFA and CFA, the latter informed by the established QLQC30 structure and views of both patients and clinicians on which are the most relevant items. Dimensions determined by EFA or CFA were then subjected to Rasch analysis. Results: CFA results generally supported the proposed QLQ-C30 structure (comparative fit index =0.99, Tucker–Lewis index =0.99, root mean square error of approximation =0.04). EFA revealed fewer factors and some items cross-loaded on multiple factors. Further assessment of dimensionality with Rasch analysis allowed better alignment of the EFA dimensions with those detected by CFA. Conclusion: CFA was more appropriate and efficient than EFA in producing clinically interpretable results for the HSCS for a proposed new cancer-specific MAUI. Our findings suggest that CFA should be recommended generally when deriving a preference-based measure from a HRQOL measure that has an established domain structure

    A 20-year study of melt processes over Larsen C Ice Shelf using a high-resolution regional atmospheric model: Part 1, Model configuration and validation

    Get PDF
    Following collapses of the neighbouring Larsen A and B ice shelves, Larsen C has become a focus of increased attention. Determining how the prevailing meteorological conditions influence its surface melt regime is of paramount importance for understanding the dominant processes causing melt and ultimately for predicting its future. To this end, a new, high-resolution (4 km grid spacing) Met Office Unified Model (MetUM) hindcast of atmospheric conditions and surface melt processes over the central Antarctic Peninsula is introduced. The hindcast is capable of simulating observed near-surface meteorology and surface melt conditions over Larsen C. In contrast with previous model simulations, the MetUM captures the observed east-west gradient in surface melting associated with foehn winds, as well as the inter-annual variability in melt shown in previous observational studies. As exemplars, we focus on two case studies – the months preceding the collapse of the Larsen B ice shelf in March 2002 and the high-foehn, high-melt period of March-May 2016 - to test the hindcast’s ability to reproduce the atmospheric effects that contributed to considerable melting during those periods. The results suggest that the MetUM hindcast is a useful tool with which to explore the dominant causes of surface melting on Larsen C

    Mass corrections in J/ψBBˉJ/\psi \to B\bar B decay and the role of distribution amplitudes

    Full text link
    We consider mass correction effects on the polar angular distribution of a baryon--antibaryon pair created in the chain decay process ee+J/ψBBˉe^-e^+ \to J/\psi \to B\bar B, generalizing a previous analysis of Carimalo. We show the relevance of the features of the baryon distribution amplitudes and estimate the electromagnetic corrections to the QCD results.Comment: 26 pages + 3 figures, REVTEX 3.0, figures appended as uuencoded, tar-compressed postscript fil

    Weathering the Storm: Managing Older Adults With Breast Cancer Amid COVID-19 and Beyond

    Get PDF
    Caring for older patients with breast cancer presents unique clinical considerations because of preexisting and competing comorbidity, the potential for treatment-related toxicity, and the consequent impact on functional status. In the context of the COVID-19 pandemic, treatment decision making for older patients is especially challenging and encourages us to refocus our treatment priorities. While we work to avoid treatment delays and maintain therapeutic benefit, we also need to minimize the risk for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) exposures, myelosuppression, general chemotherapy toxicity, and functional decline. Herein, we propose multidisciplinary care considerations for the aging patient with breast cancer, with the goal to promote a team-based, multidisciplinary treatment approach during the COVID-19 pandemic and beyond. These considerations remain relevant as we navigate the "new normal" for the approximately 30% of breast cancer patients aged 70 years and older who are diagnosed in the United States annually and for the thousands of older patients living with recurrent and/or metastatic disease

    Idling Magnetic White Dwarf in the Synchronizing Polar BY Cam. The Noah-2 Project

    Full text link
    Results of a multi-color study of the variability of the magnetic cataclysmic variable BY Cam are presented. The observations were obtained at the Korean 1.8m and Ukrainian 2.6m, 1.2m and 38-cm telescopes in 2003-2005, 56 observational runs cover 189 hours. The variations of the mean brightness in different colors are correlated with a slope dR/dV=1.29(4), where the number in brackets denotes the error estimates in the last digits. For individual runs, this slope is much smaller ranging from 0.98(3) to 1.24(3), with a mean value of 1.11(1). Near the maximum, the slope becomes smaller for some nights, indicating more blue spectral energy distribution, whereas the night-to-night variability has an infrared character. For the simultaneous UBVRI photometry, the slopes increase with wavelength from dU/dR=0.23(1) to dI/dR=1.18(1). Such wavelength dependence is opposite to that observed in non-magnetic cataclysmic variables, in an agreement to the model of cyclotron emission. The principal component analysis shows two (with a third at the limit of detection) components of variablitity with different spectral energy distribution, which possibly correspond to different regions of emission. The scalegram analysis shows a highest peak corresponding to the 200-min spin variability, its quarter and to the 30-min and 8-min QPOs. The amplitudes of all these components are dependent on wavelength and luminosity state. The light curves were fitted by a statistically optimal trigonometrical polynomial (up to 4-th order) to take into account a 4-hump structure. The dependences of these parameters on the phase of the beat period and on mean brightness are discussed. The amplitude of spin variations increases with an increasing wavelength and with decreasing brightnessComment: 30pages, 11figures, accepted in Cent.Eur.J.Phy
    corecore