160 research outputs found

    Angle, spin, and depth resolved photoelectron spectroscopy on quantum materials

    Get PDF
    PK gratefully acknowledges The Royal Society for support.The role of X-ray based electron spectroscopies in determining chemical, electronic, and magnetic properties of solids has been well-known for several decades. A powerful approach is angle-resolved photoelectron spectroscopy, whereby the kinetic energy and angle of photoelectrons emitted from a sample surface are measured. This provides a direct measurement of the electronic band structure of crystalline solids. Moreover, it yields powerful insights into the electronic interactions at play within a material and into the control of spin, charge, and orbital degrees of freedom, central pillars of future solid state science. With strong recent focus on research of lower-dimensional materials and modified electronic behavior at surfaces and interfaces, angle-resolved photoelectron spectroscopy has become a core technique in the study of quantum materials. In this review, we provide an introduction to the technique. Through examples from several topical materials systems, including topological insulators, transition metal dichalcogenides, and transition metal oxides, we highlight the types of information which can be obtained. We show how the combination of angle, spin, time, and depth-resolved experiments are able to reveal “hidden” spectral features, connected to semiconducting, metallic and magnetic properties of solids, as well as underlining the importance of dimensional effects in quantum materials.PostprintPeer reviewe

    Engineering higher order Van Hove singularities in two dimensions: the example of the surface layer of Sr2_2RuO4_4

    Full text link
    The properties of correlated electron materials are often intricately linked to Van Hove singularities (VHs) in the vicinity of the Fermi energy. The class of these VHs is of great importance, with higher order ones -- with power-law divergence in the density of states -- leaving frequently distinct signatures in physical properties. We use a new theoretical method to detect and analyse higher order Van Hove singularities (HOVHs) in two-dimensional materials and apply it to the electronic structure of the surface layer of Sr2_2RuO4_4. We then constrain a low energy model of the VHs of the surface layer of Sr2_2RuO4_4 against angle-resolved photoemission spectroscopy and quasiparticle interference data to analyse the VHs near the Fermi level. We show how these VHs can be engineered into HOVHs.Comment: 8 pages including Supplemental Material, 5 figure

    Ramifications of Optical Pumping on the Interpretation of Time-Resolved Photoemission Experiments on Graphene

    Get PDF
    In pump-probe time and angle-resolved photoemission spectroscopy (TR-ARPES) experiments the presence of the pump pulse adds a new level of complexity to the photoemission process in comparison to conventional ARPES. This is evidenced by pump-induced vacuum space-charge effects and surface photovoltages, as well as multiple pump excitations due to internal reflections in the sample-substrate system. These processes can severely affect a correct interpretation of the data by masking the out-of-equilibrium electron dynamics intrinsic to the sample. In this study, we show that such effects indeed influence TR-ARPES data of graphene on a silicon carbide (SiC) substrate. In particular, we find a time- and laser fluence-dependent spectral shift and broadening of the acquired spectra, and unambiguously show the presence of a double pump excitation. The dynamics of these effects is slower than the electron dynamics in the graphene sample, thereby permitting us to deconvolve the signals in the time domain. Our results demonstrate that complex pump-related processes should always be considered in the experimental setup and data analysis.Comment: 9 pages, 4 figure

    Changes of Fermi Surface Topology due to the Rhombohedral Distortion in SnTe

    Get PDF
    Stoichiometric SnTe is theoretically a small gap semiconductor that undergoes a ferroelectric distortion on cooling. In reality however, crystals are always non-stoichiometric and metallic; the ferroelectric transition is therefore more accurately described as a polar structural transition. Here we study the Fermi surface using quantum oscillations as a function of pressure. We find the oscillation spectrum changes at high pressure, due to the suppression of the polar transition and less than 10 kbar is sufficient to stabilize the undistorted cubic lattice. This is accompanied by a large decrease in the Hall and electrical resistivity. Combined with our density functional theory (DFT) calculations and angle resolved photoemission spectroscopy (ARPES) measurements this suggests the Fermi surface LL-pockets have lower mobility than the tubular Fermi surfaces that connect them. Also captured in our DFT calculations is a small widening of the band gap and shift in density of states for the polar phase. Additionally we find the unusual phenomenon of a linear magnetoresistance that exists irrespective of the distortion that we attribute to regions of the Fermi surface with high curvature.Comment: 8 pages, 5 figure

    Ultrafast Dynamics of Massive Dirac Fermions in Bilayer Graphene

    Get PDF
    Bilayer graphene is a highly promising material for electronic and optoelectronic applications since it is supporting massive Dirac fermions with a tuneable band gap. However, no consistent picture of the gap's effect on the optical and transport behavior has emerged so far, and it has been proposed that the insulating nature of the gap could be compromised by unavoidable structural defects, by topological in-gap states, or that the electronic structure could be altogether changed by many-body effects. Here we directly follow the excited carriers in bilayer graphene on a femtosecond time scale, using ultrafast time- and angle-resolved photoemission. We find a behavior consistent with a single-particle band gap. Compared to monolayer graphene, the existence of this band gap leads to an increased carrier lifetime in the minimum of the lowest conduction band. This is in sharp contrast to the second sub-state of the conduction band, in which the excited electrons decay through fast, phonon-assisted inter-band transitions.Comment: 5 pages, 4 figure

    Hybrid reflections from multiple x-ray scattering in epitaxial oxide films

    Get PDF
    E.H.S. and D.G.S. acknowledge support by the National Science Foundation (NSF) MRSEC program (DMR-1420620).In numerous symmetric Ξ-2Ξ scans of phase-pure epitaxial complex oxide thin films grown on single-crystal substrates, we observe x-ray diffraction peaks that correspond to neither the film nor the substrate crystal structure. These peaks are the result of multiple, sequential diffraction events that occur from both the film and the substrate. The occurrence of so-called "hybrid" reflections, while described in the literature, is not widely reported within the complex oxide thin-film community. We describe a simple method to predict and identify peaks resulting from hybrid reflections and show examples from epitaxial complex oxide films belonging to three distinct structural types.Publisher PDFPeer reviewe

    Hierarchy of Lifshitz transitions in the surface electronic structure of Sr2RuO4 under uniaxial compression

    Get PDF
    Funding: We gratefully acknowledge support from the Engineering and Physical Sciences Research Council (Grant Nos. EP/T02108X/1 and EP/R031924/1), the European Research Council (through the QUESTDO project, 714193), and the Leverhulme Trust (Grant No. RL-2016-006). E.A.M., A.Z., and I.M. gratefully acknowledge studentship support from the International Max-Planck Research School for Chemistry and Physics of Quantum Materials. N.K. is supported by a KAKENHI Grants-in-Aids for Scientific Research (Grant Nos.18K04715, and 21H01033), and Core-to-Core Program (No. JPJSCCA20170002) from the Japan Society for the Promotion of Science (JSPS) and by a JST-Mirai Program (Grant No. JPMJMI18A3). APM and CWH acknowledge support from the Deutsche Forschungsgemeinschaft - TRR 435 288 - 422213477 (project A10). We thank Diamond Light Source for access to Beamline I05 (Proposals SI27471 and SI28412), which contributed to the results presented here.We report the evolution of the electronic structure at the surface of the layered perovskiteSr2RuO4 under large in-plane uniaxial compression, leading to anisotropic B1g strains of Δxx − Δyy = −0.9 ± 0.1%. From angle-resolved photoemission, we show how this drives a sequence of Lifshitz transitions, reshaping the low-energy electronic structure and the rich spectrum of van Hove singularities that the surface layer of Sr2RuO4 hosts. From comparison to tight-binding modelling, we find that the strain is accommodated predominantly by bond-length changes rather than modifications of octahedral tilt and rotation angles. Our study sheds new light on the nature of structural distortions at oxide surfaces, and how targeted control of these can be used to tune density of states singularities to the Fermi level, in turn paving the way to the possible realisation of rich collective states at the Sr2RuO4 surface.PostprintPeer reviewe

    Spin and valley control of free carriers in single-layer WS2

    Get PDF
    Data are available from http://dx.doi.org/10.17630/a25b95c6-b9e8-4ecf-9559-bb09e58a7835The semiconducting single-layer transition metal dichalcogenides have been identified as ideal materials for accessing and manipulating spin- and valley-quantum numbers due to a set of favorable optical selection rules in these materials. Here, we apply time- and angle-resolved photoemission spectroscopy to directly probe optically excited free carriers in the electronic band structure of a high quality single layer (SL) of WS2 grown on Ag(111). We present a momentum resolved analysis of the optically generated free hole density around the valence band maximum of SL WS2 for linearly and circularly polarized optical excitations. We observe that the excited free holes are valley polarized within the upper spin-split branch of the valence band, which implies that the photon energy and polarization of the excitation permit selective excitations of free electron-hole pairs with a given spin and within a single valley.PostprintPeer reviewe
    • 

    corecore