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Stoichiometric SnTe is theoretically a small gap semiconductor that undergoes a ferroelectric dis-
tortion on cooling. In reality however, crystals are always non-stoichiometric and metallic; the
ferroelectric transition is therefore more accurately described as a polar structural transition. Here
we study the Fermi surface using quantum oscillations as a function of pressure. We find the os-
cillation spectrum changes at high pressure, due to the suppression of the polar transition and less
than 10 kbar is sufficient to stabilize the undistorted cubic lattice. This is accompanied by a large
decrease in the Hall and electrical resistivity. Combined with our density functional theory (DFT)
calculations and angle resolved photoemission spectroscopy (ARPES) measurements this suggests
the Fermi surface L-pockets have lower mobility than the tubular Fermi surfaces that connect them.
Additionally, we find the unusual phenomenon of a linear magnetoresistance that exists irrespective
of the distortion that we attribute to regions of the Fermi surface with high curvature.

On first appearance SnTe looks like a simple semi-
conductor with a small bandgap that is formed by the
ionic transfer between Sn and Te. Despite its simplicity
SnTe is known to host several interesting phenomena
including ferroelectricity [1, 2] and is a topological
crystalline insulator with potential surface states [3, 4].
Grown samples are however always non-stoichiometric
and Te rich, with the Sn deficiency accommodated in
the lattice as vacancies [5]. As a consequence the Fermi
level is shifted into the valence band, leading to metallic
behaviour with a free carrier concentration of holes, nh.
The polar state transition temperature, Tc, is below
100 K and nh dependent [6]. Increasing nh reduces
Tc and eventually stabilizes the undistorted lattice.
While avoiding the polar distortion is advantageous
for studying topological states which are protected by
crystalline symmetry, the large nh makes any investiga-
tion of surface states by transport extremely difficult.
So far there are no reports on how Tc varies under
pressure. Here we use hydrostatic pressure to suppress
Tc and measure the associated changes in Fermi surface
topology and transport properties.
At 300 K SnTe has a fcc rocksalt structure shown in

Figure 1(a) with space group Fm3m. The polar distor-
tion is driven by a soft transverse optic phonon [1, 2],
that distorts the lattice along the (111) direction of the
cubic structure to a R3m rhombohedral phase with shear
angle α ≈ 59.878◦ [7] (α = 60◦ for fcc) and relative shift
of the two fcc sublattices of υ ∼ 0.008 (∼ 9 pm) [8].
Previous band structure calculations of the cubic phase
show a valence band made up of filled Te orbitals and
a conduction band of empty Sn orbitals, except at the
narrowest gap (1,1,1) L-point of the Brillouin zone,
where a spin-orbit driven band inversion occurs [3, 9].
For small nh the cubic Fermi surface is made up of

disconnected pockets at the L-points. On increasing nh
the pockets elongate and above nh ∼ 1 × 1020cm−3,
are joined by tubes [10, 11]. Quantum oscillation
measurements on bulk crystals resolved 3-4 frequencies
belonging to the L-pockets for low values of nh [12, 13].
These merged to a single frequency at increased doping
levels where the undistorted lattice is anticipated to
be stable at 0 K. The distortion therefore clearly has
consequences for the Fermi surface topology, that have
yet to be fully determined.
Angle resolved photoemission spectroscopy (ARPES)

measurements could not resolve any changes in Fermi
surface topology with temperature below Tc, however
they did see a shift in much of the density of states and
a widening of the bandgap [10]. While the bandgap
is a result of ionic transfer between Sn and Te, its
widening below Tc suggests the polar transition has an
electronic component resembling a Peierls instability.
Such a mechanism would indeed lead to changes in
Fermi-surface topology. Recent measurements on thin
films also suggest the possibility that the different
quantum oscillation frequencies in the rhombohedral
phase may be a result of spin splitting by a spin-orbit
Rashba mechanism [14].
Avoiding Tc using pressure on a sample with fixed

doping provides a unique route to investigate any
changes in Fermi surface associated with the distortion.
Here we report that a pressure of 10 kbar is adequate to
suppress the distortion in a sample with Tc = 89 K at
6 kbar pressure.
Single crystals of SnTe were grown by the same method

described elsewhere [2] with high purity elements Sn
(99.9999 %) and Te (99.9999 %) in a ratio 51:49 to
minimize nh. Crystals had natural facet faces along
cubic axes and were orientated by Laue X-ray diffraction.



2

The Tc and nh of the crystals was determined from their
electrical resistivity and Hall effect respectively. A list of
the samples studied along with their Tc and nh is given
in Table I (S3 was used in pressure studies). The values
of Tc are in close agreement with previous reports for
samples with similar nh at ambient pressure in [6].

Sample (pressure) Tc (K) nh(×1020 cm−3)
S1 (ambient) 79 2.93± 0.15
S2 (ambient) 75 3.09± 0.14
S3 (6 kbar) 89 1.12± 0.04

Table I : Values of polar transition temperature, Tc, and

corresponding carrier concentration, nh, for the 3 single crystal

samples studied here.

ARPES measurements were performed on sample S1 at
the CASSIOPEE beamline of Synchrotron SOLEIL using
a Scienta R4000 hemispherical analyser with a vertical
entrance slit and light incident in the horizontal plane.
The sample was cleaved in-situ and measured at tem-
peratures below 15 K. Measurements were taken with
p-polarised light at photon energies of 110 and 135 eV.
The approximate positions in kz of kx-ky Fermi surface
contours and band dispersions were determined from the
experimentally observed periodicity of band features as a
function of photon energy in conjunction with reference
density-functional theory calculations.
Samples S2 and S3 were cut by spark erosion into

blocks with [001] cubic axes along the length, width and
height and had dimensions 1.80 × 0.45 × 0.32 mm and
175 × 115 × 100 µm respectively. Gold electrical con-
tacts were attached by spot welding and resistivity (ρ),
Hall effect and magnetoresistance (MR) measurements
made with a current of 100 µA at 37 Hz. Experiments
were carried out in a 4He cryostat with 9 T Cryogenic
Ltd magnet and a dilution refrigerator with 15 T Oxford
Instruments magnet. Sample S2 was used to study quan-
tum oscillations as a function of applied field angle with
a rotating sample stage. Sample S3 was studied under
pressure. Pressure was applied in a diamond anvil pres-
sure cell that had diamond culets of 800 µm diameter.
Daphne oil 7373 was used as the pressure transmitting
medium. A pre-indented steel gasket with a 300 µm hole,
insulated with a Al2O3 and Stycast 1266 epoxy mixture,
contained the sample under pressure. The pressure was
determined via fluorescence lines of a small ruby chip at
300 K.

Fully relativistic density functional theory calcula-
tions were carried out for stoichiometric SnTe with the
VASP package and the PBE exchange-correlation func-
tional [15–17] for a plane-wave basis with cutoff energy
Ec = 240 eV and k-point sampling with a linear den-
sity of 60/Å−1 (30/Å−1 for mapping the potential en-
ergy surface). Constant-pressure structure optimisations
were performed until remaining force components were
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FIG. 1: (a) The cubic structure of SnTe at 300 K. (b) The en-
ergetic landscape of the rhombohedral distortion at 0 K. Here the
cubic structure is at zero energy and is a saddle point at α = 60◦

and υ = 0. (c) The electronic band structure of stoichiometric
SnTe along equivalent high symmetry paths in the (i) Fm3m cubic
and (ii) R3m rhombohedral structures. Here the band energy (E)
is plotted relative to the valence band maximum (EVBM). (d) A
close-up view of the valence band dispersion for the R3m struc-
ture along directions relevant to the Fermi surface topology. Here
degeneracy has been lifted along both (i) Γ-L/Z and (ii) Γ-X/P di-
rections as a result of the distortion. (e) The electronic density of
states as a function of E−EVBM for each structure. (f) The evolu-
tion of the Fermi surface for the Fm3m structure at three positions
of the Fermi energy (EF ) with respect to EVBM; (i) −0.165 eV,
(ii) −0.282 eV and (iii) −0.330 eV. Corresponding carrier concen-
trations, nh, are marked in the legend. (g)-(h) The evolution of the
Fermi surface for the R3m structure made up of 2 non-degenerate
bands. Here the EF shifts downwards to (i) −0.182, (ii) −0.286
and (iii) −0.344 eV, in order to conserve nh values.

less than 1 meV/Å. We found the ground state energy
for the rhombohedral structure to be ∼ 2 meV/unit
lower than the cubic structure, with a rhombohedral an-
gle distortion of α ≈ 59.66◦ and polar displacement of
υ ≈ 0.012, somewhat larger than found in previous scalar
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relativistic calculations [2]. The potential energy surface
for the distortion is shown in Figure 1(b). These val-
ues closely resemble those seen by X-ray and neutron
scattering (α ≈ 59.878◦ and υ = 0.007 for nh = 1.0
and 0.88 × 1020 cm−3 respectively) [7, 8]. The calcu-
lated band structure in the Fm3m cubic phase is shown
in Figure 1(c)(i) where the smallest band gap is seen at
the L-point, as expected. An analysis of band character
(not shown here) confirms the expected band inversion
at this point [3, 9]. The evolution of the Fermi surface
with hole doping, within the frozen band approximation
for this structure, is shown in Figure 1(f) with the Fermi
energy (EF ) at (i) -0.165 eV (nh = 0.3 × 1020 cm−3),
(ii) -0.282 eV (nh = 1.5× 1020 cm−3) and (iii) -0.330 eV
(nh = 3.8 × 1020 cm−3) with respect to the top of the
valence band. Below ∼ −0.25 eV (above nh ∼ 1 × 1020

cm−3) the band along Γ-K crosses EF and ultimately
leads to tubes connecting the L-pockets.
The electronic band structure for the R3m rhombo-

hedral structure is shown in Figure 1(c)(ii). Whether
the band inversion survives into the R3m phase depends
on the size of the distortion, consistent with previous
studies [18]. Additionally, the breaking of cubic sym-
metry lifts degeneracies throughout the Brillouin zone.
The paths relevant to the Fermi surface topology are
Γ-L/Z and Γ-X/P (Γ-L and Γ-K in cubic notation),
shown in Figure 1(d)(i) and (ii) respectively. The re-
sulting Fermi surface now consists of hole pockets from
two, non-degenerate bands in Figure 1(g)-(h). The sin-
gle eight-fold degenerate L-pockets from the cubic phase
is split into four unique pockets, two per band. This is
a consequence of both rhombohedral symmetry break-
ing, and spin-orbit splitting to lift the band degeneracy.
The total carrier concentration (Fermi surface volume)
must remain constant between the two phases. Hence,
the R3m phase sees an downward shift of EF to (i) -
0.182 eV (ii) -0.286 eV and (iii) -0.344 eV for the equiv-
alent carrier concentrations in Figure 1(f). The density
of states for the Fm3m and R3m structures is shown in
Figure 1(e). For the R3m structure the density of states
does not resolve some of the subtle features very close
to the valence band maximum that are extremely small
in volume. These small features contribute a negligible
number of carriers to the computed nh. Additionally, the
positions of the Fermi level considered here are well be-
low these parts of the band structure.

ARPES measurements, performed with photon ener-
gies of hν = 135 and 110 eV, chosen to approximately
probe planes which pass through the centre and the L/Z-
points of the Brillouin zone respectively, are shown in
Figure 2. The measured band dispersions along X/P -
Γ-X/P directions (Figure 2(a)) show the three Te p-
derived bands found from DFT. Although the measure-
ments were performed at 15 K, in the rhombohedral
phase, it is not possible to identify signatures of the band
splittings which result from the breaking of cubic sym-
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FIG. 2: (a) Angle-resolved photoemission (ARPES) band disper-
sions along the X/P -Γ-X/P direction measured with hν = 135 eV
light (grey scale). Density functional theory (DFT) calculations
for the R3m structure, shifted in energy by 0.324 eV, are included
as overlays (lines). (b) Three-dimensional schematic of the R3m
Brillouin zone with the calculated Fermi surface for a Fermi en-
ergy (EF ) of −0.324 eV with respect to the valence band max-
imum. Shaded planes at kz = 0 and −π

a
indicate the positions

of extracted kx-ky contours in (c)-(d) respectively. (c)-(d) Fermi
surface contours obtained with ARPES at EF ± 25 meV collected
using hν = 135 and 110 eV photons to approximate the kz = 0 and
kz = π/a contours respectively, and simulated DFT images for the
Fermi surface in (b). The simulated DFT ARPES images were
produced with a set of 600 planes along kz between ±2.4 Å−1,
centred on the plane of interest. The contour was generated from
the intersection of each plane with the Fermi surface and is real-
istically blurred to simulate the finite effective energy and kx-ky
resolutions in experiment. Finally all planes were summed up and
weighted with a Lorentzian to simulate kz broadening. The R3m
Brillouin zone boundary is overlaid as a guide and high-symmetry
points are labelled.

metry or the small differences between the dispersions
along the Γ-X and Γ-P directions. This is likely pre-
dominantly due to large intrinsic kz broadening in our
measurements, which is a result of the surface sensitiv-
ity of photoemission. Other contributions to resolving
the distortion include the energy (25 meV at 110 eV and
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35 meV at 135 eV) and angular resolution (≈ 0.3◦) of
the experimental set-up.
Nonetheless, comparison with the calculations is in-

structive. In particular, we find that the valence bands
just cut the Fermi level along the Γ-X/P direction. This
indicates a doping level such that the L-points are con-
nected by tubular Fermi surfaces (Figure 2(b)). Consis-
tent with this, we show in Fig. 2(c) and (d) ARPES
Fermi surface measurements corresponding to the planes
shown in Figure 2(b). These are compared with simu-
lated spectra from our DFT calculations, performed for
a Fermi level 0.324 eV below the valence band maxi-
mum (corresponding to a calculated hole density nh =
2.8× 1020 cm−3, close to the value from Hall effect mea-
surements in Table I). The bands forming the tube-like
regions are directly visible in a plane encompassing the
L-points of the Brillouin zone (Fig. 2(d)), while the cross-
sections of these tubular sections is apparent in the Fermi
surface measured in the kz = 0 plane (Fig. 2(c)).
Resistivity for sample S2 normalised to the value at

300 K (ρ300 K) is shown in Figure 3(a). An anomaly
due to the increased electron-soft phonon scattering ex-
ists at Tc [19], made clearer by differentiation (Tc and
nh are listed in Table I). The magnetoresistance, MR =
(ρ(B) − ρ(0))/ρ(0), up to B = 15 T at 40 mK for a se-
ries of applied field angles, θ, is shown in Figure 3(b).
Here θ = 0 corresponds to B ‖ [001]. Rotation was in
increments of 5◦ to B ‖ [011] at θ = 45◦ through to the
B ‖ [010] axis at θ = 90◦. Shubnikov-de Haas quantum
oscillations (SdH) exist above 8 T and were extracted by
subtracting a smoothly varying polynomial background.
Examples of the SdH against B−1 for θ = 0◦ and θ = 45◦

are shown in Figure 3(c) and contain a beating pattern
characteristic of several neighbouring frequencies. Fast
Fourier transforms (FFT) resolved 3-4 distinct oscilla-
tion frequencies that are labelled β1-β4, in Figure 3(d).
The angular dependence of the oscillation frequencies, F ,
is shown in Figure 3(e). The lowest frequency, β1, follows

F (γ) =
F (0)√

cos2γ + 1
ε sin2γ

(1)

expected for an ellipsoid with eccentricity, ε, shown as
the black dashed line. Here γ is the angle with respect to
the principal axis of the ellipsoid ((1,1,1) direction). Fre-
quencies β2-β4 clearly contain more structure than can
be explained by a simple ellipsoid.

A contour plot of the FFT spectra normalised to the
largest peak amplitude as a function of frequency and
angle is shown in Figure 3(f). Also included are the cal-
culated frequencies for the L-pockets of both R3m Fermi
surface bands with nh = 2.7 × 1020 cm−3 and a distor-
tion of α = 59.86◦ and υ = 0.006. These values of nh,
α and υ give excellent agreement between experimental
results and calculation in Figure 3(f). The Fermi sur-
faces are shown in Figure 3(g). The α and υ values were
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FIG. 3: (a) The resistivity, ρ, normalised to the value at 300 K for
sample S2. The anomaly at Tc = 75 K is made clearer by differenti-
ation (inset). (b) The magnetoresistance, MR = (ρ(B)−ρ(0))/ρ(0),
at 40 mK for a series of applied field angles, θ. Curves have been
offset for clarity. Above 8 T Shubnikov-de Haas oscillations ex-
ist. (c) Examples of the oscillations plotted against inverse field
for θ = 0◦ (B ‖ [001]) and θ = 45◦ (B ‖ [011]). (d) Fast Fourier
transforms (FFT) of (c), where 3-4 distinct frequencies labelled β1-
β4 are resolved. (e) The evolution of β1-β4, shown as markers, as
a function of θ. The black dashed line corresponds to an ellipse
given by EQ (1) with an eccentricity of ε = 5. (f) A colourscale
of FFT amplitude normalised to the maximum value as a func-
tion of field angle and frequency. Red (band 1) and blue (band 2)
markers with dashed lines are the expected oscillation frequencies
for the pockets at L in the R3m calculated Fermi surfaces in (g)
where nh = 2.7× 1020 cm−3 and the distortion is α = 59.86◦ and
υ = 0.006. (h) Shows the calculated oscillation frequencies for the
pockets at L with B ‖ [001] as a function of the distortion size.
Here 0 is the Fm3m structure and 1 the the R3m distortion that
minimises the DFT energy. The actual distortion is taken to be
the value at the arrow.

determined by how the oscillation frequencies vary as a
function of the rhombohedral distortion. For this we con-
structed a set of linearly interpolated crystal structures
between the cubic Fm3m and optimized R3m structures
(α = 59.66◦ and υ = 0.012). The change in frequencies
for the L pockets with B ‖ [001] as a function of dis-
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FIG. 4: (a) The resistivity, ρ, of sample S3 normalised to the value
at 300 K, for pressures 6, 10 and 18 kbar. Here the high temper-
ature freezing of Daphne oil is avoided by extrapolation (dashed
line). Inset dρ/dT gives Tc = 89 K at 6 kbar. No anomaly due
to Tc can be identified at 10 kbar. (b) Magnetoresistance at 2 K
with B ‖ [001] for the above pressures. The black dashed lines
are straight line fits between 1-9 T. (c) The Hall resistivity, ρxy .
Inset are the corresponding curves of ρ(B) with no normalisation.
(d) The Hall conductivity, σxy , at 6 and 10 kbar. Fits to EQ (5)
are shown as black dashed lines. (e) Pressure dependence of polar
displacement, υ, (left axis) and the rhombohedral angle, α, (right
axis) as function of pressure, from spin-orbit coupling DFT calcu-
lations.

tortion is in Figure 3(h). This illustrates the substantial
effect of the rhombohedral distortion on Fermi surface
topology.

Resistivity curves normalised to ρ300 K for sample S3
studied under pressure are in Figure 4(a) with dρ/dT in-
set. Here ρ300 K was determined by extrapolation (black
dashed line) to avoid a high temperature anomaly where
the Daphne oil freezes. At 6 kbar dρ/dT gives Tc = 89 K.
On increasing pressure to 10 kbar no anomaly in dρ/dT
can be identified. There is also a sharp drop in ρ/ρ300 K

by a factor of 1.58 at 2 K. No further changes were ob-
served at 18 kbar and the curve is almost indistinguish-
able from that at 10 kbar. The magnetoresistance and
Hall resistivity, ρxy, at 2 K are shown in Figure 4(b) and
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FIG. 5: (a) The Hall resistivity, ρxy , at 40 mK with B ‖ [001] for
6 kbar (left axis) and 10 kbar (right axis). (b) The correspond-
ing magnetoresistance (MR) at 6 and 10 kbar. Shubnikov-de Haas
oscillations exist above 8 T in both ρxy and the MR. (c) The oscil-
lations against B−1 in; (i) ρxy (ii) the MR for 6 kbar and (iii) ρxy
(iv) the MR for 10 kbar. (d);(i)-(iv) The associated fast Fourier
transforms of the oscillations in (c). At 6 kbar in (i)-(ii) three
frequencies marked β1-β3 exist in both ρxy and the MR. A single
frequency, β = 198 T, exists for 10 kbar in (iii)-(iv). (e) The oscilla-
tion amplitude in ρxy against temperature, normalised to the value
at 40 mK, for β1-β3 at 6 kbar and β at 10 kbar. Solid lines are fits
to EQ (3) that give the calculated effective masses given in the leg-
end. (f) The Dingle plot of the β oscillation amplitude at 10 kbar
in ρxy at 40 mK. Here a straight line fit gives TD = 15.7± 1.1 K.
For verification the solid red line in (c)(iii) corresponds to an oscil-
lation with frequency 198 T and amplitude given by EQ (4) with
TD = 15.7 K.

(c) respectively. The Hall conductivity, σxy, is given by

σxy =
ρxy

{ρ(B)}2 + ρ2xy
(2)

and is shown in Figure 4(d).
The Hall resistivity and magnetoresistance measured on
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sample S3 up to 14 T at 40 mK are shown in Figure 5(a)
and (b). Both quantities contain Shubnikov-de Haas os-
cillations (SdH) above 8 T. Here, only measurements with
B ‖ [001] could be taken. Figure 5(c) shows the SdH
against B−1 for 6 kbar in (i) the Hall effect and (ii) the
MR and for 10 kbar in (iii) the Hall effect and (iv) the
MR. The FFT in Figure 5(d) shows three frequencies ex-
ist in both the Hall and MR at 6 kbar; β1 = 209 T,
β2 = 246 T and β3 = 290 T. Only a single frequency in
the FFT at β = 198 T exists at 10 kbar in Figure 5(d)
for both the Hall and MR.
The temperature dependence of the quantum oscilla-

tion amplitude is governed by the temperature reduction
term, RT , in the Lifshitz-Kosevich formula given by

RT =
κm∗T/B

sinh(κm∗T/B)
(3)

where κ = 2π2kB/e~ and m∗ is the effective mass. The
SdH amplitude normalised to the value at 40 mK with
corresponding fits to RT are shown in Figure 5(e). Mea-
surements were limited to 3 K, the maximum temper-
ature of the dilution refrigerator, where only a slight
decrease in amplitude could be realised. Derived effec-
tive masses for β1-β3 are the same within error with an
average value of m∗ = 0.171 ± 0.012 me. At 10 kbar
no change in m∗ was seen within error for β and m∗ =
0.165± 0.011 me.
The quantum oscillation amplitude dependence on field

is determined by the Dingle term, RD, in the Lifshitz-
Kosevich formula given by

RD = exp

(
−κm∗TD

B

)
(4)

where the Dingle temperature TD = ~/2πkBτ can be
used to calculate the scattering time τ . Beating patterns
at 6 kbar make any estimate of TD highly uncertain. At
10 kbar a graph of ln(AB1/2sinh(κm∗T/B)) against B−1

is shown in Figure 5(f), where A is the oscillation ampli-
tude. A straight line fit gives TD = 15.7 ± 1.1 K and
consequently τ = 7.76 ± 0.55 × 10−14 s. The solid red
line in Figure 5 (c) is a calculation with TD = 15.7 K for
a single oscillation frequency of 198 T, showing excellent
agreement with the measurements.
Having presented our theoretical and experimental find-

ings we now discuss the significance of the results. DFT
bandstructure calculations highlight the large changes in
Fermi surface topology as a consequence of the polar
distortion. The qualitative agreement with our ARPES
measurements reported here provides a validation in the
accuracy of our DFT calculations close to the Fermi sur-
face and confirms that the off-stoichiometry leads to a
degenerate doping i.e. the Fermi level shifts into the va-
lence bands.
Quantum oscillations below Tc contain 3-4 neighbour-

ing frequencies. The DFT calculation identifies the de-
tected oscillations to be from the L-pockets that have

a similar angular dispersion, even when these pockets
are connected by tube like Fermi surfaces. The expected
oscillation frequencies for the connecting tubes are all
less than 80 T for the Fermi surface in Figure 3(g) and
were not resolved in experiment. Although peaks exist
at ≈ 30 T in the FFT spectra, they may also be a result
of subtracting the polynomial background. There are
four unique L-pockets that vary in size in the rhombohe-
dral phase as a consequence of rhombohedral symmetry
breaking and spin-orbit splitting lifting the band degen-
eracy. The presence of several neighbouring oscillation
frequencies for B ‖ [001] is therefore expected in the R3m
structure (Figure 3(h)). This is consistent with previous
studies [14]. In the cubic phase the single eight-fold
degenerate L-pockets are expected to give only a single
oscillation frequency for B ‖ [001]. With pressure we find
10 kbar is adequate to merge the neighbouring frequen-
cies into a single frequency. Additionally, at 10 kbar no
anomaly in resistivity due to Tc can be identified. There-
fore the rhombohedral transition has been suppressed by
a pressure of 10 kbar. This is also accurately captured in
DFT calculation, shown in Figure 4(e) for υ and α as a
function of pressure.
The suppression of the rhombohedral transition leads

to large changes in Hall signal. ρxy shows non-linear be-
haviour for all pressures. Our measurements for σxy at
all pressures are well described by a single band model,

σxy = eB

(
nhµ

2
h

1 + µ2
hB

2

)
=

σωcτ

1 + ω2
cτ

2
(5)

where µh, is the carrier mobility, σ the zero field
conductivity and ωc the cyclotron frequency. EQ(5)
highlights that for sufficiently mobile carriers with
µhB ∼ 1 non-linearity may still exist for a single band.
Using a two-band model did not improve the fit despite
adding two extra fitting parameters. Values of nh
and µh extracted from the fits are given in Table II.
Upon entering the cubic phase the carrier concentration
increases significantly by a factor of 1.64, while the
mobility stays approximately constant within error,
consistent with the drop in resistivity by a factor of 1.58.

R3m (6 kbar) Fm3m (10 kbar)
nh (×1020 cm−3) 1.12± 0.04 1.83± 0.05
µh (cm2 V−1s−1) 2570± 50 2660± 50

Table II : The values of carrier concentration, nh, and mobility,

µh, in sample S3 according to the fits of σxy in Figure 4(d).

On increasing pressure in the cubic structure (to
18 kbar) no further changes are observed in any mea-
sured quantity. The changes in ρxy and σxy are therefore
a direct consequence of the modification in Fermi surface
associated with the distortion. Expected quantum oscil-
lation frequencies from calculations show the distortion
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acts to increase the volume of some L-pockets while de-
creasing others (Figure 3(h)). This is not seen in experi-
ment. Figure 5(d) shows β1-β3 at 6 kbar are all larger in
magnitude than β at 10 kbar. A full angular dependence
is required to say definitively how the pockets change.
However these results point towards the L-pockets being
smaller in the cubic phase with potentially more carriers
in the connecting tubes to maintain a fixed total number
of carriers.
Quantum oscillations at 10 kbar give µh = eτ/m∗ =

846 ± 59 cm2V−1s−1, significantly less than the mobil-
ity from the Hall effect in Table II. This suggests that
the Hall conductivity is dominated by the connecting
tubes that have a significantly higher mobility than the
L-pockets. Therefore for the cubic phase more carriers
in the connecting tubes in turn leads to more carriers
becoming visible to the Hall effect, providing a simple
explanation for the changes seen here. Since the Dirac
points are not close to EF the role of surface contribu-
tions can be discounted.
The MR in Figure 4 (b) follows a similar behaviour in

both structures. It begins quadratically for low B before
becoming linear above 1 T to the highest fields, demon-
strated by the straight line fits. Linear MR is an unusual
phenomenon and both quantum and classical explana-
tions have been proposed. Abrikosov’s well known quan-
tum model gives a linear MR when all carriers occupy the
lowest Landau level for a linear electron energy disper-
sion [20, 21]. The linear MR reported in some topological
insulators is expected to be associated with similar quan-
tum effects [22]. Previous reports on SnTe thin films
with a larger nh than our samples, saw a linear mag-
netoresistance and attributed it to Dirac surface states
dominating the transport as a result of band bending at
the substrate/film interface that brings EF closer to the
Dirac points [23]. In our bulk crystals such band bending
is unlikely.
Classically linear MR from irregular current paths as

a result of disorder was described by Parish and Little-
wood [24]. Here our samples have high mobility carriers
and quantum oscillations that reflects relatively little dis-
order, making a Parish Littlewood mechanism unlikely.
Instead we suggest a straightforward origin first discussed
by Pippard based on a Fermi surface containing sharp
corners [25].
Pippard demonstrated that for sufficiently small values

of ωcτ � 2π Fermi surfaces with sharp corners lead to
a MR varying as ωcτ rather than ω2

cτ
2 [25]. While the

occurrence of infinitely sharp corners is difficult to imag-
ine in reality, Pippard points out regions with suitably
sharp curvature and minimal rounding lead to an initial
quadratic form at low field followed by linear behaviour
with increasing field, analogous to the measurements re-
ported here. At 9 T in the cubic phase ωcτ ≈ 0.6,
satisfying the requirement ωcτ � 2π. We therefore at-
tribute the linear MR in SnTe to regions of high curva-

ture present in the Fermi surface for both the cubic and
rhombohedral structure, most likely at the necks where
L-pockets and connecting tubes meet making an almost
right angle. Curvature driven linear MR has previously
been reported in materials with partially gapped Fermi
surfaces due to density wave order [26, 27], proving it as
a potential explanation for many other systems.
In conclusion we have shown the polar distortion in

SnTe is accompanied by a reconstruction of the Fermi
surface. Under ambient pressure both our quantum os-
cillation and ARPES measurements are well described
with DFT calculations. We found that a pressure of just
under 10 kbar stablizes the cubic structure in good agree-
ment with the required pressure calculated with DFT.
This consequently allows the contribution to the Hall ef-
fect for each feature of the Fermi surface to be deter-
mined. Linear magnetoresistance has been observed in
both structures and attributed to the presence of regions
with high curvature in the Fermi surface.
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