1,412 research outputs found

    Maternal Choline Supplementation during Normal Murine Pregnancy Alters the Placental Epigenome: Results of an Exploratory Study

    Full text link
    The placental epigenome regulates processes that affect placental and fetal development, and could be mediating some of the reported effects of maternal choline supplementation (MCS) on placental vascular development and nutrient delivery. As an extension of work previously conducted in pregnant mice, the current study sought to explore the effects of MCS on various epigenetic markers in the placenta. RNA and DNA were extracted from placentas collected on embryonic day 15.5 from pregnant mice fed a 1X or 4X choline diet, and were subjected to genome-wide sequencing procedures or mass-spectrometry-based assays to examine placental imprinted gene expression, DNA methylation patterns, and microRNA (miRNA) abundance. MCS yielded a higher (fold change = 1.63-2.25) expression of four imprinted genes (Ampd3, Tfpi2, Gatm and Aqp1) in the female placentas and a lower (fold change = 0.46–0.62) expression of three imprinted genes (Dcn, Qpct and Tnfrsf23) in the male placentas (false discovery rate (FDR) \u3c 0.05 for both sexes). Methylation in the promoter regions of these genes and global placental DNA methylation were also affected (p \u3c 0.05). Additionally, a lower (fold change = 0.3; Punadjusted = 2.05 x 10; FDR = 0.13) abundance of miR-2137 and a higher (fold change = 1.25–3.92; p \u3c 0.05) expression of its target genes were detected in the 4X choline placentas. These data demonstrate that the placental epigenome is responsive to maternal choline intake during murine pregnancy and likely mediates some of the previously described choline-induced effects on placental and fetal outcomes

    Maternal Choline Supplementation Alters Fetal Growth Patterns in a Mouse Model of Placental Insufficiency

    Full text link
    Impairments in placental development can adversely affect pregnancy outcomes. The bioactive nutrient choline may mitigate some of these impairments, as suggested by data in humans, animals, and human trophoblasts. Herein, we investigated the effects of maternal choline supplementation (MCS) on parameters of fetal growth in a Dlx3+/− (distal-less homeobox 3) mouse model of placental insufficiency. Dlx3+/− female mice were assigned to 1X (control), 2X, or 4X choline intake levels during gestation. Dams were sacrificed at embryonic days E10.5, 12.5, 15.5, and 18.5. At E10.5, placental weight, embryo weight, and placental efficiency were higher in 4X versus 1X choline. Higher concentrations of hepatic and placental betaine were detected in 4X versus 1X choline, and placental betaine was positively associated with embryo weight. Placental mRNA expression of Igf1 was downregulated by 4X (versus 1X) choline at E10.5. No differences in fetal growth parameters were detected at E12.5 and 15.5, whereas a small but significant reduction in fetal weight was detected at E18.5 in 4X versus 1X choline. MCS improved fetal growth during early pregnancy in the Dlx3+/− mice with the compensatory downregulation of Igf1 to slow growth as gestation progressed. Placental betaine may be responsible for the growth-promoting effects of choline

    Neurology

    Get PDF
    Contains reports on five research projects.United States Navy, Office of Naval Research (Nonr-609(39))United States Public Health Service (B-3055, B-3090)Unites States Air Force (Contract AF33(616)-7282)Unites States Air Force (Contract AF-33(616)-7588, Project: 61(8-7232); Task 71784))United States Army Chemical Corps (DA-18-108-405-Cml-942

    Mainstreaming nature-based solutions: What role do Communities of Practice play in delivering a paradigm shift?

    Get PDF
    As the urgency to adapt to climate change intensifies, nature-based solutions (NBS) are receiving increasing attention. To mainstream NBS, a fundamental shift in environmental management is required. This study evaluates the role that Communities of Practice (CoP) can play as platforms to foster social learning to drive such a paradigm shift. A Natural Flood Management (NFM) CoP in Yorkshire, UK, was used as a case study. A unique research design combined opportunistic data collected prior to the inception of the CoP and purposive data collected during and after its formation. Opportunistic data captured information from stakeholders regarding NFM engagement and challenges around its instalment and delivery. Purposive data was used to examine the ability of a CoP to foster social learning, overcome the challenges identified prior to its establishment and evaluate the extent to which a CoP contributes to inducing a NBS paradigm shift, using a multi-loop social learning framework. Results demonstrate that the CoP was effective in delivering social learning and improving NFM instalment and delivery. While most evidence of social learning point to incremental rather than transformational changes, it did reveal abundant questioning of the current framing of flood management. Furthermore, the CoP seems to have encouraged some participants to re-think the current governance structures for NFM and the boundaries of current actor networks, raising promise that, if sustained in the longer term, the CoP could induce a paradigm shift. Further research should conduct longitudinal studies to examine the CoP’s development overtime and its potential for overcoming current constraints

    Maternal Choline Supplementation Modulates Placental Markers of Inflammation, Angiogenesis, and Apoptosis in a Mouse Model of Placental Insufficiency

    Full text link
    Dlx3 (distal-less homeobox 3) haploinsufficiency in mice has been shown to result in restricted fetal growth and placental defects. We previously showed that maternal choline supplementation (4X versus 1X choline) in the Dlx3+/�� mouse increased fetal and placental growth in mid-gestation. The current study sought to test the hypothesis that prenatal choline would modulate indicators of placenta function and development. Pregnant Dlx3+/�� mice consuming 1X (control), 2X, or 4X choline from conception were sacrificed at embryonic (E) days E10.5, E12.5, E15.5, and E18.5, and placentas and embryos were harvested. Data were analyzed separately for each gestational day controlling for litter size, fetal genotype (except for models including only +/�� pups), and fetal sex (except when data were stratified by this variable). 4X choline tended to increase (p \u3c 0.1) placental labyrinth size at E10.5 and decrease (p \u3c 0.05) placental apoptosis at E12.5. Choline supplementation decreased (p \u3c 0.05) expression of pro-angiogenic genes Eng (E10.5, E12.5, and E15.5), and Vegf (E12.5, E15.5); and pro-inflammatory genes Il1b (at E15.5 and 18.5), Tnfa (at E12.5) and Nfkb (at E15.5) in a fetal sex-dependent manner. These findings provide support for a modulatory effect of maternal choline supplementation on biomarkers of placental function and development in a mouse model of placental insufficienc

    Duplex DNA and BLM regulate gate opening by the human TopoIIIα-RMI1-RMI2 complex

    Get PDF
    Topoisomerase IIIα is a type 1A topoisomerase that forms a complex with RMI1 and RMI2 called TRR in human cells. TRR plays an essential role in resolving DNA replication and recombination intermediates, often alongside the helicase BLM. While the TRR catalytic cycle is known to involve a protein-mediated single-stranded (ss)DNA gate, the detailed mechanism is not fully understood. Here, we probe the catalytic steps of TRR using optical tweezers and fluorescence microscopy. We demonstrate that TRR forms an open gate in ssDNA of 8.5 ± 3.8 nm, and directly visualize binding of a second ssDNA or double-stranded (ds)DNA molecule to the open TRR-ssDNA gate, followed by catenation in each case. Strikingly, dsDNA binding increases the gate size (by ~16%), while BLM alters the mechanical flexibility of the gate. These findings reveal an unexpected plasticity of the TRR-ssDNA gate size and suggest that TRR-mediated transfer of dsDNA may be more relevant in vivo than previously believed

    Quantifying and Mitigating Motor Phenotypes Induced by Antisense Oligonucleotides in the Central Nervous System [preprint]

    Get PDF
    Antisense oligonucleotides (ASOs) are emerging as a promising class of therapeutics for neurological diseases. When injected directly into the cerebrospinal fluid, ASOs distribute broadly across brain regions and exert long-lasting therapeutic effects. However, many phosphorothioate (PS)-modified gapmer ASOs show transient motor phenotypes when injected into the cerebrospinal fluid, ranging from reduced motor activity to ataxia or acute seizure-like phenotypes. The effect of sugar and phosphate modifications on these phenotypes has not previously been systematically studied. Using a behavioral scoring assay customized to reflect the timing and nature of these effects, we show that both sugar and phosphate modifications influence acute motor phenotypes. Among sugar analogues, PS-DNA induces the strongest motor phenotype while 2’-substituted RNA modifications improve the tolerability of PS-ASOs. This helps explain why gapmer ASOs have been more challenging to develop clinically relative to steric blocker ASOs, which have a reduced tendency to induce these effects. Reducing the PS content of gapmer ASOs, which contain a stretch of PS-DNA, improves their toxicity profile, but in some cases also reduces their efficacy or duration of effect. Reducing PS content improved the acute tolerability of ASOs in both mice and sheep. We show that this acute toxicity is not mediated by the major nucleic acid sensing innate immune pathways. Formulating ASOs with calcium ions before injecting into the CNS further improved their tolerability, but through a mechanism at least partially distinct from the reduction of PS content. Overall, our work identifies and quantifies an understudied aspect of oligonucleotide toxicology in the CNS, explores its mechanism, and presents platform-level medicinal chemistry approaches that improve tolerability of this class of compounds

    Preliminary Evidence of the Association between Time on Buprenorphine and Cognitive Performance among Individuals with Opioid Use Disorder Maintained on Buprenorphine: A Pilot Study

    Get PDF
    People on buprenorphine maintenance treatment (BMT) commonly present cognitive deficits that have been associated with illicit drug use and dropout from buprenorphine treatment. This study has compared cognitive responses to the Stroop Task and the Continuous Performance Task (CPT) among individuals on BMT, with recent drug use, and healthy controls and explored the associations between cognitive responses and drug use, craving, and buprenorphine use among participants on BMT. The participants were 16 individuals on BMT and 23 healthy controls. All participants completed a 60 min laboratory session in which they completed the Stroop Task and the CPT, a saliva drug test, a brief clinical history that collected substance-use- and treatment-related information, and the Opioid Craving Scale. The results showed that the BMT participants presented more commission errors (MBMT participants = 2.49; Mhealthy controls = 1.38; p = 0.048) and longer reaction times (MBMT participants = 798.09; Mhealthy controls = 699.09; p = 0.047) in the Stroop Task than did the healthy controls. More days on buprenorphine were negatively associated with reaction time in the CPT (−0.52) and the number of commission errors (−0.53), simple reaction time (−0.54), and reaction time correct (−0.57) in the Stroop Task. Neither drug use nor craving was significantly associated with the results for the cognitive tasks. Relative to the control participants, the BMT individuals performed worse in terms of longer reaction times and more commission errors in the Stroop Task. Within the BMT participants, longer times on buprenorphine were associated with better cognitive results in terms of faster reaction times for both tasks and lower commission errors for the Stroop Task

    On quiver Grassmannians and orbit closures for representation-finite algebras

    Get PDF
    We show that Auslander algebras have a unique tilting and cotilting module which is generated and cogenerated by a projective-injective; its endomorphism ring is called the projective quotient algebra. For any representation- nite algebra, we use the projective quotient algebra to construct desingularizations of quiver Grassmannians, orbit closures in representation varieties, and their desingularizations. This generalizes results of Cerulli Irelli, Feigin and Reineke

    Increased incidence of kidney diseases in general practice after a nationwide albuminuria self-test program

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To study the influence of a nationwide albuminuria self-test program on the number of GP contacts for urinary complaints and/or kidney diseases and the number of newly diagnosed patients with kidney diseases by the GP.</p> <p>Methods</p> <p>Data were used from the Netherlands Information Network of General Practice (LINH), including a representative sample of general practices with a dynamic population of approximately 300.000 listed patients. Morbidity data were retrieved from electronic medical records, kept in a representative sample of general practices. The incidence of kidney diseases and urinary complaints before and after the albuminuria self-test program was compared with logistic regression analyses.</p> <p>Results</p> <p>Data were used from 139 general practices, including 444,220 registered patients. The number of GP consultations for kidney diseases and urinary complaints was increased in the year after the albuminuria self-test program and particularly shortly after the start of the program. Compared with the period before the self-test program, more patients have been diagnosed by the GP with symptoms/complaints of kidney disease and urinary diseases (OR = 1.7 (CI 1.4 - 2.0) and OR = 2.1 (CI 1.9 - 2.3), respectively). The odds on an abnormal urine-test in the period after the self-test program was three times higher than the year before (OR = 3.0 (CI 2.4 - 3.6)). The effect of the self-test program on newly diagnosed patients with an abnormal urine test was modified by both the presence of the risk factors hypertension and diabetes mellitus. For this diagnosis the highest OR was found in patients without both conditions (OR = 4.2 (CI 3.3 - 5.4)).</p> <p>Conclusions</p> <p>A nationwide albuminuria self-test program resulted in an increasing number of newly diagnosed kidney complaints and diseases the year after the program. The highest risks were found in patients without risk factors for kidney diseases.</p
    • …
    corecore