204 research outputs found

    Multiple phase transitions in an agent-based evolutionary model with neutral fitness

    Get PDF
    Null models are crucial for understanding evolutionary processes such as speciation and adaptive radiation. We analyse an agent-based null model, considering a case without selection—neutral evolution—in which organisms are defined only by phenotype. Universal dynamics has previously been demonstrated in a related model on a neutral fitness landscape, showing that this system belongs to the directed percolation (DP) universality class. The traditional null condition of neutral fitness (where fitness is defined as the number of offspring each organism produces) is extended here to include equal probability of death among organisms. We identify two types of phase transition: (i) a non-equilibrium DP transition through generational time (i.e. survival), and (ii) an equilibrium ordinary percolation transition through the phenotype space (based on links between mating organisms). Owing to the dynamical rules of the DP reaction–diffusion process, organisms can only sparsely fill the phenotype space, resulting in significant phenotypic diversity within a cluster of mating organisms. This highlights the necessity of understanding hierarchical evolutionary relationships, rather than merely developing taxonomies based on phenotypic similarity, in order to develop models that can explain phylogenetic patterns found in the fossil record or to make hypotheses for the incomplete fossil record of deep time

    High-throughput analysis reveals novel maternal germline RNAs crucial for primordial germ cell preservation and proper migration

    Get PDF
    During oogenesis, hundreds of maternal RNAs are selectively localized to the animal or vegetal pole, including determinants of somatic and germline fates. Although microarray analysis has identified localized determinants, it is not comprehensive and is limited to known transcripts. Here, we utilized high-throughput RNA sequencing analysis to comprehensively interrogate animal and vegetal pole RNAs in the fully grown Xenopus laevis oocyte. We identified 411 (198 annotated) and 27 (15 annotated) enriched mRNAs at the vegetal and animal pole, respectively. Ninety were novel mRNAs over 4-fold enriched at the vegetal pole and six were over 10-fold enriched at the animal pole. Unlike mRNAs, microRNAs were not asymmetrically distributed. Whole-mount in situ hybridization confirmed that all 17 selected mRNAs were localized. Biological function and network analysis of vegetally enriched transcripts identified protein-modifying enzymes, receptors, ligands, RNA-binding proteins, transcription factors and co-factors with five defining hubs linking 47 genes in a network. Initial functional studies of maternal vegetally localized mRNAs show that sox7 plays a novel and important role in primordial germ cell (PGC) development and that ephrinB1 (efnb1) is required for proper PGC migration. We propose potential pathways operating at the vegetal pole that highlight where future investigations might be most fruitful.Fil: Owens, Dawn A.. University of Miami; Estados UnidosFil: Butler, Amanda M.. University of Miami; Estados UnidosFil: Agüero, Tristán Horacio. University of Miami; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto Superior de Investigaciones Biológicas. Universidad Nacional de Tucumán. Instituto Superior de Investigaciones Biológicas; ArgentinaFil: Newman, Karen M.. University of Miami; Estados UnidosFil: Van Booven, Derek. University of Miami; Estados UnidosFil: King, Mary Lou. University of Miami; Estados Unido

    Reconstructing ‘the Alcoholic’: Recovering from Alcohol Addiction and the Stigma this Entails

    Get PDF
    Public perception of alcohol addiction is frequently negative, whilst an important part of recovery is the construction of a positive sense of self. In order to explore how this might be achieved, we investigated how those who self-identify as in recovery from alcohol problems view themselves and their difficulties with alcohol and how they make sense of others’ responses to their addiction. Semi-structured interviews with six individuals who had been in recovery between 5 and 35 years and in contact with Alcoholics Anonymous were analysed using Interpretative Phenomenological Analysis. The participants were acutely aware of stigmatising images of ‘alcoholics’ and described having struggled with a considerable dilemma in accepting this identity themselves. However, to some extent they were able to resist stigma by conceiving of an ‘aware alcoholic self’ which was divorced from their previously unaware self and formed the basis for a new more knowing and valued identity

    The effects of insulin resistance on individual tissues: an application of a mathematical model of metabolism in humans

    Get PDF
    Whilst the human body expends energy constantly, the human diet consists of a mix of carbohydrates and fats delivered in a discontinuous manner. To deal with this sporadic supply of energy, there are transport, storage and utilisation mechanisms, for both carbohydrates and fats, around all tissues of the body. Insulin-resistant states such as type 2 diabetes and obesity are characterised by reduced efficiency of these mechanisms. Exactly how these insulin-resistant states develop, for example whether there is an order in which tissues become insulin resistant, is an active area of research with the hope of gaining a better overall understanding of insulin resistance. In this paper we use a previously derived system of 12 first-or der coupled differential equations that describe the transport between, and storage in, different tissues of the human body. We briefly revisit the derivation of the model before parametrising the model to account for insulin resistance. We then solve the model numerically, separately simulating each individual tissue as insulin resistant, and discuss and compare these results, drawing three main conclusions. The implications of these results are in accordance with biological intuition. First, insulin resistance in a tissue creates a knock-on effect on the other tissues in the body, whereby they attempt to compensate for the reduced efficiency of the insulin resistant tissue. Secondly, insulin resistance causes a fatty liver; and the insulin resistance of tissues other than the liver can cause fat to accumulate in the liver. Finally, although insulin resistance in individual tissues can cause slightly reduced skeletal-muscle metabolic flexibility, it is when the whole body is insulin resistant that the biggest effect on skeletal muscle flexibility is see

    Tribute to Professor David Bruck

    Full text link
    A tribute to Professor David I. Bruck, who served on the faculty of the Washington and Lee University School of Law from 2004 to 2020. Bruck directed W&L\u27s death penalty defense clinic, the Virginia Capital Case Clearinghouse, also known as VC3 . He became Professor of Law, Emeritus in 2020

    Effects of antiplatelet therapy on stroke risk by brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases: subgroup analyses of the RESTART randomised, open-label trial

    Get PDF
    Background Findings from the RESTART trial suggest that starting antiplatelet therapy might reduce the risk of recurrent symptomatic intracerebral haemorrhage compared with avoiding antiplatelet therapy. Brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases (such as cerebral microbleeds) are associated with greater risks of recurrent intracerebral haemorrhage. We did subgroup analyses of the RESTART trial to explore whether these brain imaging features modify the effects of antiplatelet therapy
    corecore