1,420 research outputs found

    Use of a Simulation Model to Evaluate the Influence of Reproductive Performance and Management Decisions on Net Income in Beef Production

    Get PDF
    A stochastic dynamic model of reproduction and a deterministic cow-herd economic simulation model were used to evaluate how management decisions and reproductive performance interact to influence net income in a cow-calf operation (1,000 cows) for 1 yr of production. The stochastic model was used to determine herd performance when length of breeding season (45, 70, or 120 d) interacted with three postpartum intervals of an estrus (48, 65, or 90 d) and three conception rates at first service (60, 70, or 80%). Short, moderate, and long postpartum intervals were used to reflect differences in reproductive performance. In addition, replacement heifers were bred beginning either 3 wk ahead of the cow herd or at the same time as the cow herd. Fifty-four simulations were generated. Inputs into the economic model were herd performance, livestock and feed prices, nonfeed costs, and feed requirements for 1 yr of production. Feed requirements were calculated separately for each postpartum interval to reflect three different body condition scores, thin, moderate, and good, to correspond with long, moderate, and short postpartum intervals. Net income was greatest with 704 breeding seasons when the postpartum interval was short or moderate. When the postpartum interval was long, net income was greatest with 1204 breeding seasons because pregnancy rates, as a result of the long breeding season, were highest and feed costs were lowest for thin cows. Overall, net income was greatest when cows were managed to have postpartum intervals of moderate length. Breeding heifers 3 wk before the cows provided the most economic benefit with long postpartum intervals

    Ground-state properties of the spin-1/2 antiferromagnetic Heisenberg model on the triangular lattice: A variational study based on entangled-plaquette states

    Full text link
    We study, on the basis of the general entangled-plaquette variational ansatz, the ground-state properties of the spin-1/2 antiferromagnetic Heisenberg model on the triangular lattice. Our numerical estimates are in good agreement with available exact results and comparable, for large system sizes, to those computed via the best alternative numerical approaches, or by means of variational schemes based on specific (i.e., incorporating problem dependent terms) trial wave functions. The extrapolation to the thermodynamic limit of our results for lattices comprising up to N=324 spins yields an upper bound of the ground-state energy per site (in units of the exchange coupling) of −0.5458(2)-0.5458(2) [−0.4074(1)-0.4074(1) for the XX model], while the estimated infinite-lattice order parameter is 0.3178(5)0.3178(5) (i.e., approximately 64% of the classical value).Comment: 8 pages, 3 tables, 2 figure

    Overview of Boundary Layer Transition Research in Support of Orbiter Return To Flight

    Get PDF
    A predictive tool for estimating the onset of boundary layer transition resulting from damage to and/or repair of the thermal protection system was developed in support of Shuttle Return to Flight. The boundary layer transition tool is part of a suite of tools that analyze the aerothermodynamic environment to the local thermal protection system to allow informed disposition of damage for making recommendations to fly as is or to repair. Using mission specific trajectory information and details of each damage site or repair, the expected time (and thus Mach number) at transition onset is predicted to help define the aerothermodynamic environment to use in the subsequent thermal and stress analysis of the local thermal protection system and structure. The boundary layer transition criteria utilized for the tool was developed from ground-based measurements to account for the effect of both protuberances and cavities and has been calibrated against select flight data. Computed local boundary layer edge conditions were used to correlate the results, specifically the momentum thickness Reynolds number over the edge Mach number and the boundary layer thickness. For the initial Return to Flight mission, STS-114, empirical curve coefficients of 27, 100, and 900 were selected to predict transition onset for protuberances based on height, and cavities based on depth and length, respectively

    Waves of potentiality: Some thoughts on database narratives and the digital dissemination of audio-visual practice research

    Get PDF
    I'm currently completing the dissemination stage of my practice/research (P/R) AHRC Fellowship in the Creative and Performing Arts. The ‘outcomes’ of the project include a linear finished film, some text in the form of articles, along with the selection of other materials, including rushes, stills and more text (both academic writing, article journals and more speculative/creative material)

    Managing the Socially Marginalized: Attitudes Towards Welfare, Punishment and Race

    Get PDF
    Welfare and incarceration policies have converged to form a system of governance over socially marginalized groups, particularly racial minorities. In both of these policy areas, rehabilitative and social support objectives have been replaced with a more punitive and restrictive system. The authors examine the convergence in individual-level attitudes concerning welfare and criminal punishment, using national survey data. The authors\u27 analysis indicates a statistically significant relationship between punitive attitudes toward welfare and punishment. Furthermore, accounting for the respondents\u27 racial attitudes explains the bivariate relationship between welfare and punishment. Thus, racial attitudes seemingly link support for punitive approaches to opposition to welfare expenditures. The authors discuss the implications of this study for welfare and crime control policies by way of the conclusion

    High Temperature Matter and Gamma Ray Spectra from Microscopic Black Holes

    Full text link
    The relativistic viscous fluid equations describing the outflow of high temperature matter created via Hawking radiation from microscopic black holes are solved numerically for a realistic equation of state. We focus on black holes with initial temperatures greater than 100 GeV and lifetimes less than 6 days. The spectra of direct photons and photons from π0\pi^0 decay are calculated for energies greater than 1 GeV. We calculate the diffuse gamma ray spectrum from black holes distributed in our galactic halo. However, the most promising route for their observation is to search for point sources emitting gamma rays of ever-increasing energy.Comment: 33 pages, 13 figures, to be submitted to PR

    Complete-Graph Tensor Network States: A New Fermionic Wave Function Ansatz for Molecules

    Get PDF
    We present a new class of tensor network states that are specifically designed to capture the electron correlation of a molecule of arbitrary structure. In this ansatz, the electronic wave function is represented by a Complete-Graph Tensor Network (CGTN) ansatz which implements an efficient reduction of the number of variational parameters by breaking down the complexity of the high-dimensional coefficient tensor of a full-configuration-interaction (FCI) wave function. We demonstrate that CGTN states approximate ground states of molecules accurately by comparison of the CGTN and FCI expansion coefficients. The CGTN parametrization is not biased towards any reference configuration in contrast to many standard quantum chemical methods. This feature allows one to obtain accurate relative energies between CGTN states which is central to molecular physics and chemistry. We discuss the implications for quantum chemistry and focus on the spin-state problem. Our CGTN approach is applied to the energy splitting of states of different spin for methylene and the strongly correlated ozone molecule at a transition state structure. The parameters of the tensor network ansatz are variationally optimized by means of a parallel-tempering Monte Carlo algorithm

    Strong interconversion of non-polar phonons and Josephson plasma oscillations induced by equilibrium Josephson currents in high T_c superconductors

    Full text link
    We analyze consequences of dynamical modulations of Josephson current by non-polar lattice mode in the Josephson junction barrier. In the high TcT_c junctions, the effect of such modulations can be anomalously strong due to the proximity of the insulating barrier to the superconducting state. Accordingly, the interconversion of sound (as well as other non-polar phonons) and the Josephson plasma oscillations mediated by stationary Josephson currents, which may be present in the junction due to various reasons, becomes possible. We suggest that this effect can be employed for imaging of the stationary Josephson currents. Estimates of the effect are given.Comment: 11 RevTeX pages, no figure
    • 

    corecore