137 research outputs found

    A Substructural Epistemic Resource Logic: Theory and Modelling Applications

    Full text link
    We present a substructural epistemic logic, based on Boolean BI, in which the epistemic modalities are parametrized on agents' local resources. The new modalities can be seen as generalizations of the usual epistemic modalities. The logic combines Boolean BI's resource semantics --- we introduce BI and its resource semantics at some length --- with epistemic agency. We illustrate the use of the logic in systems modelling by discussing some examples about access control, including semaphores, using resource tokens. We also give a labelled tableaux calculus and establish soundness and completeness with respect to the resource semantics

    The cross-fertilization of jurisprudence and the principle of proportionality : process and result from a canadian perspective

    Get PDF
    Modern comparative constitutionalism traces back at least to the practice of some states in the post-World War II era of adopting democratic regimes as well as constitutionally entrenched bills of rights. It has since been fueled by the proliferation of international human rights instruments, which has increased with the end of the Cold War. Significant attention was first paid to comparative constitutional structure, but many states have now reached another stage. As notably witnessed by the works of the Council of Europe and especially those of the Venice Commission in the domain of constitutional justice, the question now is no longer about constitutionalism, including whether rights should be constitutionally protected, as much as it is about constitutional justice: how to effectively implement constitutions. Both on a regional and a global level, mutual inspiration is increasingly drawn from the case-law of peer Courts of other countries and even other continents, which gives rise to a cross-fertilisation phenomenon. One constitutional principle that emerges from, and which is still being forged by, such cross-fertilisation is the principle according to which the limitation of human rights and freedoms must be proportional to states’ objectives, that is, the principle of proportionality. More specifically, our topic is about both the historical process of jurisprudential cross-fertilisation and its functional result as far as the principle of proportionality is concerned. We speak from a Canadian perspective. The aim here is to be able to distinguish between what is common and what is distinctive about the Canadian approach

    Primary cilia sensitize endothelial cells to BMP and prevent excessive vascular regression

    Get PDF
    Blood flow shapes vascular networks by orchestrating endothelial cell behavior and function. How endothelial cells read and interpret flow-derived signals is poorly understood. Here, we show that endothelial cells in the developing mouse retina form and use luminal primary cilia to stabilize vessel connections selectively in parts of the remodeling vascular plexus experiencing low and intermediate shear stress. Inducible genetic deletion of the essential cilia component intraflagellar transport protein 88 (IFT88) in endothelial cells caused premature and random vessel regression without affecting proliferation, cell cycle progression, or apoptosis. IFT88 mutant cells lacking primary cilia displayed reduced polarization against blood flow, selectively at low and intermediate flow levels, and have a stronger migratory behavior. Molecularly, we identify that primary cilia endow endothelial cells with strongly enhanced sensitivity to bone morphogenic protein 9 (BMP9), selectively under low flow. We propose that BMP9 signaling cooperates with the primary cilia at low flow to keep immature vessels open before high shear stress-mediated remodeling

    Novel SPG11 mutations in Asian kindreds and disruption of spatacsin function in the zebrafish

    Get PDF
    Autosomal recessive hereditary spastic paraplegia with thin corpus callosum (HSP-TCC) maps to the SPG11 locus in the majority of cases. Mutations in the KIAA1840 gene, encoding spatacsin, have been shown to underlie SPG11-linked HSP-TCC. The aim of this study was to perform candidate gene analysis in HSP-TCC subjects from Asian families and to characterize disruption of spatacsin function during zebrafish development. Homozygosity mapping and direct sequencing were used to assess the ACCPN, SPG11, and SPG21 loci in four inbred kindreds originating from the Indian subcontinent. Four novel homozygous SPG11 mutations (c.442+1G>A, c.2146C>T, c.3602_3603delAT, and c.4846C>T) were identified, predicting a loss of spatacsin function in each case. To investigate the role of spatacsin during development, we additionally ascertained the complete zebrafish spg11 ortholog by reverse transcriptase PCR and 5′ RACE. Analysis of transcript expression through whole-mount in situ hybridization demonstrated ubiquitous distribution, with highest levels detected in the brain. Morpholino antisense oligonucleotide injection was used to knock down spatacsin function in zebrafish embryos. Examination of spg11 morphant embryos revealed a range of developmental defects and CNS abnormalities, and analysis of axon pathway formation demonstrated an overall perturbation of neuronal differentiation. These data confirm loss of spatacsin as the cause of SPG11-linked HSP-TCC in Asian kindreds, expanding the mutation spectrum recognized in this disorder. This study represents the first investigation in zebrafish addressing the function of a causative gene in autosomal recessive HSP and identifies a critical role for spatacsin during early neural development in vivo

    SNiPlay: a web-based tool for detection, management and analysis of SNPs. Application to grapevine diversity projects

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>High-throughput re-sequencing, new genotyping technologies and the availability of reference genomes allow the extensive characterization of Single Nucleotide Polymorphisms (SNPs) and insertion/deletion events (indels) in many plant species. The rapidly increasing amount of re-sequencing and genotyping data generated by large-scale genetic diversity projects requires the development of integrated bioinformatics tools able to efficiently manage, analyze, and combine these genetic data with genome structure and external data.</p> <p>Results</p> <p>In this context, we developed SNiPlay, a flexible, user-friendly and integrative web-based tool dedicated to polymorphism discovery and analysis. It integrates:</p> <p>1) a pipeline, freely accessible through the internet, combining existing softwares with new tools to detect SNPs and to compute different types of statistical indices and graphical layouts for SNP data. From standard sequence alignments, genotyping data or Sanger sequencing traces given as input, SNiPlay detects SNPs and indels events and outputs submission files for the design of Illumina's SNP chips. Subsequently, it sends sequences and genotyping data into a series of modules in charge of various processes: physical mapping to a reference genome, annotation (genomic position, intron/exon location, synonymous/non-synonymous substitutions), SNP frequency determination in user-defined groups, haplotype reconstruction and network, linkage disequilibrium evaluation, and diversity analysis (Pi, Watterson's Theta, Tajima's D).</p> <p>Furthermore, the pipeline allows the use of external data (such as phenotype, geographic origin, taxa, stratification) to define groups and compare statistical indices.</p> <p>2) a database storing polymorphisms, genotyping data and grapevine sequences released by public and private projects. It allows the user to retrieve SNPs using various filters (such as genomic position, missing data, polymorphism type, allele frequency), to compare SNP patterns between populations, and to export genotyping data or sequences in various formats.</p> <p>Conclusions</p> <p>Our experiments on grapevine genetic projects showed that SNiPlay allows geneticists to rapidly obtain advanced results in several key research areas of plant genetic diversity. Both the management and treatment of large amounts of SNP data are rendered considerably easier for end-users through automation and integration. Current developments are taking into account new advances in high-throughput technologies.</p> <p>SNiPlay is available at: <url>http://sniplay.cirad.fr/</url>.</p

    Transcriptomic Characterization of Temperature Stress Responses in Larval Zebrafish

    Get PDF
    Temperature influences nearly all biochemical, physiological and life history activities of fish, but the molecular mechanisms underlying the temperature acclimation remains largely unknown. Previous studies have identified many temperature-regulated genes in adult tissues; however, the transcriptional responses of fish larvae to temperature stress are not well understood. In this study, we characterized the transcriptional responses in larval zebrafish exposed to cold or heat stress using microarray analysis. In comparison with genes expressed in the control at 28°C, a total of 2680 genes were found to be affected in 96 hpf larvae exposed to cold (16°C) or heat (34°C) for 2 and 48h and most of these genes were expressed in a temperature-specific and temporally regulated manner. Bioinformatic analysis identified multiple temperature-regulated biological processes and pathways. Biological processes overrepresented among the earliest genes induced by temperature stress include regulation of transcription, nucleosome assembly, chromatin organization and protein folding. However, processes such as RNA processing, cellular metal ion homeostasis and protein transport and were enriched in genes up-regulated under cold exposure for 48 h. Pathways such as mTOR signalling, p53 signalling and circadian rhythm were enriched among cold-induced genes, while adipocytokine signalling, protein export and arginine and praline metabolism were enriched among heat-induced genes. Although most of these biological processes and pathways were specifically regulated by cold or heat, common responses to both cold and heat stresses were also found. Thus, these findings provide new interesting clues for elucidation of mechanisms underlying the temperature acclimation in fish
    corecore