14 research outputs found

    Metastasis in an orthotopic murine model of melanoma is independent of RAS/RAF mutation

    Get PDF
    Melanoma is the most lethal skin tumor, in large part because of a propensity for early metastasis. Good models of this most clinically relevant feature of melanoma are lacking. Here we report the development of an in vivo model of metastasis that relies on orthotopic injection of GFP-tagged lines in immunodeficient mice, serial intravital imaging of tumor progression and quantification of distant spread by 2-photon laser scanning microscopy, immunohistochemistry and real-time PCR analysis. Using this system, we report an assessment of the in vivo growth and metastatic properties of 11 well-characterized human melanoma cell lines. A subset of lines demonstrated rapid in vivo growth with invasion of host vasculature and distant seeding of viscera in this system. The ability to form metastasis in vivo did not correlate with 3D collagen invasion in vitro. Surprisingly, similar lines in terms of molecular genetic events differed markedly in their propensity to metastasize to distant organs such as brain and lung. In particular, two lines harboring B-RAF mutation and high levels of phosphorylated ERK and AKT (pERK and pAKT) were reproducibly unable to form tumors after orthotopic injection. Likewise, two previously identified RAS/RAF wild-type “epithelial-like” lines that do not have elevated pERK, pAKT or express TWIST1 mRNA still demonstrated a pronounced ability for orthotopic growth and metastatic spread. All the metastatic cell lines in this model showed increased NEDD9 expression, but NEDD9 lentiviral overexpression did not convey a metastatic phenotype on non-metastatic cells. These data suggest that melanoma metastasis is a molecularly heterogeneous process that may not require epidermal-to-mesenchymal transition or ERK activation, although both may facilitate the process

    A global collaboration to study intimate partner violence-related head trauma: The ENIGMA consortium IPV working group

    Get PDF
    Intimate partner violence includes psychological aggression, physical violence, sexual violence, and stalking from a current or former intimate partner. Past research suggests that exposure to intimate partner violence can impact cognitive and psychological functioning, as well as neurological outcomes. These seem to be compounded in those who suffer a brain injury as a result of trauma to the head, neck or body due to physical and/or sexual violence. However, our understanding of the neurobehavioral and neurobiological effects of head trauma in this population is limited due to factors including difficulty in accessing/recruiting participants, heterogeneity of samples, and premorbid and comorbid factors that impact outcomes. Thus, the goal of the Enhancing NeuroImaging Genetics through Meta-Analysis (ENIGMA) Consortium Intimate Partner Violence Working Group is to develop a global collaboration that includes researchers, clinicians, and other key community stakeholders. Participation in the working group can include collecting harmonized data, providing data for meta- and mega-analysis across sites, or stakeholder insight on key clinical research questions, promoting safety, participant recruitment and referral to support services. Further, to facilitate the mega-analysis of data across sites within the working group, we provide suggestions for behavioral surveys, cognitive tests, neuroimaging parameters, and genetics that could be used by investigators in the early stages of study design. We anticipate that the harmonization of measures across sites within the working group prior to data collection could increase the statistical power in characterizing how intimate partner violence-related head trauma impacts long-term physical, cognitive, and psychological health

    LKB1/STK11 Inactivation Leads to Expansion of a Prometastatic Tumor Subpopulation in Melanoma

    Get PDF
    Germline mutations in LKB1 (STK11) are associated with the Peutz-Jeghers syndrome (PJS), which includes aberrant mucocutaneous pigmentation, and somatic LKB1 mutations occur in 10% of cutaneous melanoma. By somatically inactivating Lkb1 with K-Ras activation (±p53 loss) in murine melanocytes, we observed variably pigmented and highly metastatic melanoma with 100% penetrance. LKB1 deficiency resulted in increased phosphorylation of the SRC family kinase (SFK) YES, increased expression of WNT target genes, and expansion of a CD24+ cell population, which showed increased metastatic behavior in vitro and in vivo relative to isogenic CD24− cells. These results suggest that LKB1 inactivation in the context of RAS activation facilitates metastasis by inducing an SFK-dependent expansion of a prometastatic, CD24+ tumor subpopulation

    Mitigation of hematologic radiation toxicity in mice through pharmacological quiescence induced by CDK4/6 inhibition

    Get PDF
    Total body irradiation (TBI) can induce lethal myelosuppression, due to the sensitivity of proliferating hematopoietic stem/progenitor cells (HSPCs) to ionizing radiation (IR). No effective therapy exists to mitigate the hematologic toxicities of TBI. Here, using selective and structurally distinct small molecule inhibitors of cyclin-dependent kinase 4 (CDK4) and CDK6, we have demonstrated that selective cellular quiescence increases radioresistance of human cell lines in vitro and mice in vivo. Cell lines dependent on CDK4/6 were resistant to IR and other DNA-damaging agents when treated with CDK4/6 inhibitors. In contrast, CDK4/6 inhibitors did not protect cell lines that proliferated independently of CDK4/6 activity. Treatment of wild-type mice with CDK4/6 inhibitors induced reversible pharmacological quiescence (PQ) of early HSPCs but not most other cycling cells in the bone marrow or other tissues. Selective PQ of HSPCs decreased the hematopoietic toxicity of TBI, even when the CDK4/6 inhibitor was administered several hours after TBI. Moreover, PQ at the time of administration of therapeutic IR to mice harboring autochthonous cancers reduced treatment toxicity without compromising the therapeutic tumor response. These results demonstrate an effective method to mitigate the hematopoietic toxicity of IR in mammals, which may be potentially useful after radiological disaster or as an adjuvant to anticancer therapy
    corecore