77 research outputs found
Experimental Perspective on Fallback Foods and Dietary Adaptations in Early Hominins
The robust jaws and large, thick-enameled molars of the Plio–Pleistocene hominins Australopithecus and Paranthropus have long been interpreted as adaptations for hard-object feeding. Recent studies of dental microwear indicate that only Paranthropus robustus regularly ate hard items, suggesting that the dentognathic anatomy of other australopiths reflects rare, seasonal exploitation of hard fallback foods. Here, we show that hard-object feeding cannot explain the extreme morphology of Paranthropus boisei. Rather, analysis of long-term dietary plasticity in an animal model suggests year-round reliance on tough foods requiring prolonged postcanine processing in P. boisei. Increased consumption of such items may have marked the earlier transition from Ardipithecus to Australopithecus, with routine hard-object feeding in P. robustus representing a novel behaviour
Long-term patterns of body mass and stature evolution within the hominin lineage.
Body size is a central determinant of a species' biology and adaptive strategy, but the number of reliable estimates of hominin body mass and stature have been insufficient to determine long-term patterns and subtle interactions in these size components within our lineage. Here, we analyse 254 body mass and 204 stature estimates from a total of 311 hominin specimens dating from 4.4 Ma to the Holocene using multi-level chronological and taxonomic analytical categories. The results demonstrate complex temporal patterns of body size variation with phases of relative stasis intermitted by periods of rapid increases. The observed trajectories could result from punctuated increases at speciation events, but also differential proliferation of large-bodied taxa or the extinction of small-bodied populations. Combined taxonomic and temporal analyses show that in relation to australopithecines, early Homo is characterized by significantly larger average body mass and stature but retains considerable diversity, including small body sizes. Within later Homo, stature and body mass evolution follow different trajectories: average modern stature is maintained from ca 1.6 Ma, while consistently higher body masses are not established until the Middle Pleistocene at ca 0.5-0.4 Ma, likely caused by directional selection related to colonizing higher latitudes. Selection against small-bodied individuals (less than 40 kg; less than 140 cm) after 1.4 Ma is associated with a decrease in relative size variability in later Homo species compared with earlier Homo and australopithecines. The isolated small-bodied individuals of Homo naledi (ca 0.3 Ma) and Homo floresiensis (ca 100-60 ka) constitute important exceptions to these general patterns, adding further layers of complexity to the evolution of body size within the genus Homo. At the end of the Late Pleistocene and Holocene, body size in Homo sapiens declines on average, but also extends to lower limits not seen in comparable frequency since early Homo
Fossils from Mille-Logya, Afar, Ethiopia, elucidate the link between Pliocene environmental changes and Homo origins
Several hypotheses posit a link between the origin of Homo and climatic and environmental shifts between 3 and 2.5 Ma. Here we report on new results that shed light on the interplay between tectonics, basin migration and faunal change on the one hand and the fate of Australopithecus afarensis and the evolution of Homo on the other. Fieldwork at the new Mille-Logya site in the Afar, Ethiopia, dated to between 2.914 and 2.443 Ma, provides geological evidence for the northeast migration of the Hadar Basin, extending the record of this lacustrine basin to Mille-Logya. We have identified three new fossiliferous units, suggesting in situ faunal change within this interval. While the fauna in the older unit is comparable to that at Hadar and Dikika, the younger units contain species that indicate more open conditions along with remains of Homo. This suggests that Homo either emerged from Australopithecus during this interval or dispersed into the region as part of a fauna adapted to more open habitats.info:eu-repo/semantics/publishedVersio
Neurocranium versus Face: A Morphometric Approach with Classical Anthropometric Variables for Characterizing Patterns of Cranial Integration in Extant Hominoids and Extinct Hominins
The relative importance of the two main cranial complexes, the neurocranium and the splanchnocranium, has been examined in the five species of extant hominoids and in a huge sample of extinct hominins using six standard craniometric variables that measure the length, width and height of each cranial module. Factor analysis and two-block partial least squares were used for establishing the major patterns of developmental and evolutionary integration between both cranial modules. The results obtained show that all extant hominoids (including the anatomically modern humans) share a conserved pattern of developmental integration, a result that agrees with previous studies. The pattern of evolutionary integration between both cranial modules in australopiths runs in parallel to developmental integration. In contrast, the pattern of evolutionary and developmental integration of the species of the genus Homo is the opposite, which is probably the consequence of distinctive selective regimes for both hominin groups.JAPC, JMJA and PP received fundings from Ministerio de Ciencia e Innovación, Gobierno de España (http://www.idi.mineco.gob.es), project CGL2011-30334, and Consejería de Economía, Innovación, Ciencia y Empleo, Junta de Andalucía, España (http://www.juntadeandalucia.es/organismos/economiainnovacioncienciayempleo.html), project P11-HUM-7248 and Research Groups RNM-146 and HUM-607
The position of Australopithecus sediba within fossil hominin hand use diversity
The human lineage is marked by a transition in hand use, from locomotion towards increasingly dexterous manipulation, concomitant with bipedalism. The forceful precision grips used by modern humans probably evolved in the context of tool manufacture and use, but when and how many times hominin hands became principally manipulative remains unresolved. We analyse metacarpal trabecular and cortical bone, which provide insight into behaviour during an individual’s life, to demonstrate previously unrecognized diversity in hominin hand use. The metacarpals of the palm in Australopithecus sediba have trabecular morphology most like orangutans and consistent with locomotor power-grasping with the fingers, while that of the thumb is consistent with human-like manipulation. This internal morphology is the first record of behaviour consistent with a hominin that used its hand for both arboreal locomotion and human-like manipulation. This hand use is distinct from other fossil hominins in this study, including A. afarensis and A. africanus
First Early Hominin from Central Africa (Ishango, Democratic Republic of Congo)
Despite uncontested evidence for fossils belonging to the early hominin genus Australopithecus in East Africa from at least 4.2 million years ago (Ma), and from Chad by 3.5 Ma, thus far there has been no convincing evidence of Australopithecus, Paranthropus or early Homo from the western (Albertine) branch of the Rift Valley. Here we report the discovery of an isolated upper molar (#Ish25) from the Western Rift Valley site of Ishango in Central Africa in a derived context, overlying beds dated to between ca. 2.6 to 2.0 Ma. We used µCT imaging to compare its external and internal macro-morphology to upper molars of australopiths, and fossil and recent Homo. We show that the size and shape of the enamel-dentine junction (EDJ) surface discriminate between Plio-Pleistocene and post-Lower Pleistocene hominins, and that the Ishango molar clusters with australopiths and early Homo from East and southern Africa. A reassessment of the archaeological context of the specimen is consistent with the morphological evidence and suggest that early hominins were occupying this region by at least 2 Ma
- …