5,977 research outputs found

    Targeting Oxidative Stress and Aberrant Critical Period Plasticity in the Developmental Trajectory to Schizophrenia

    Get PDF
    Schizophrenia is a neurodevelopmental disorder reflecting a convergence of genetic risk and early life stress. The slow progression to first psychotic episode represents both a window of vulnerability as well as opportunity for therapeutic intervention. Here, we consider recent neurobiological insight into the cellular and molecular components of developmental critical periods and their vulnerability to redox dysregulation. In particular, the consistent loss of parvalbumin-positive interneuron (PVI) function and their surrounding perineuronal nets (PNNs) as well as myelination in patient brains is consistent with a delayed or extended period of circuit instability. This linkage to critical period triggers (PVI) and brakes (PNN, myelin) implicates mistimed trajectories of brain development in mental illness. Strategically introduced antioxidant treatment or later reinforcement of molecular brakes may then offer a novel prophylactic psychiatr

    Neutrinos in 5D SO(10) Unification

    Full text link
    We study neutrino physics in a 5D supersymmetric SO(10) GUT. We analyze several different choices for realizing the See-Saw mechanism. We find that the "natural" scale for the Majorana mass of right-handed neutrinos depends critically on whether the right-handed neutrinos are located in the bulk or localized on a brane. In the former case, the effective Majorana mass is "naturally" of order the compactification scale, about 10^{14} GeV. Note, this is the value necessary for obtaining a light tau neutrino mass approximately 10^{-2} eV which, within the context of hierarchical neutrino masses, is the right order of magnitude to explain atmospheric neutrino oscillations. On the other-hand when the right-handed neutrino is localized on the brane, the effective Majorana mass is typically larger than the compactification scale. Nevertheless with small parameters of order 1/10 - 1/30, an effective Majorana mass of order 10^{14} GeV can be accommodated. We also discuss the constraints on model building resulting from the different scenarios for locating the right-handed neutrinos.Comment: 24 page

    Alterations in TRN-anterodorsal thalamocortical circuits affect sleep architecture and homeostatic processes in oxidative stress vulnerable Gclm-/- mice.

    Get PDF
    Schizophrenia is associated with alterations of sensory integration, cognitive processing and both sleep architecture and sleep oscillations in mouse models and human subjects, possibly through changes in thalamocortical dynamics. Oxidative stress (OxS) damage, including inflammation and the impairment of fast-spiking gamma-aminobutyric acid neurons have been hypothesized as a potential mechanism responsible for the onset and development of schizophrenia. Yet, the link between OxS and perturbation of thalamocortical dynamics and sleep remains unclear. Here, we sought to investigate the effects of OxS on sleep regulation by characterizing the dynamics of thalamocortical networks across sleep-wake states in a mouse model with a genetic deletion of the modifier subunit of glutamate-cysteine ligase (Gclm knockout, KO) using high-density electrophysiology in freely-moving mice. We found that Gcml KO mice exhibited a fragmented sleep architecture and impaired sleep homeostasis responses as revealed by the increased NREM sleep latencies, decreased slow-wave activities and spindle rate after sleep deprivation. These changes were associated with altered bursting activity and firing dynamics of neurons from the thalamic reticularis nucleus, anterior cingulate and anterodorsal thalamus. Administration of N-acetylcysteine (NAC), a clinically relevant antioxidant, rescued the sleep fragmentation and spindle rate through a renormalization of local neuronal dynamics in Gclm KO mice. Collectively, these findings provide novel evidence for a link between OxS and the deficits of frontal TC network dynamics as a possible mechanism underlying sleep abnormalities and impaired homeostatic responses observed in schizophrenia

    Dysconnection Topography in Schizophrenia Revealed with State-Space Analysis of EEG

    Get PDF
    BACKGROUND: The dysconnection hypothesis has been proposed to account for pathophysiological mechanisms underlying schizophrenia. Widespread structural changes suggesting abnormal connectivity in schizophrenia have been imaged. A functional counterpart of the structural maps would be the EEG synchronization maps. However, due to the limits of currently used bivariate methods, functional correlates of dysconnection are limited to the isolated measurements of synchronization between preselected pairs of EEG signals. METHODS/RESULTS: To reveal a whole-head synchronization topography in schizophrenia, we applied a new method of multivariate synchronization analysis called S-estimator to the resting dense-array (128 channels) EEG obtained from 14 patients and 14 controls. This method determines synchronization from the embedding dimension in a state-space domain based on the theoretical consequence of the cooperative behavior of simultaneous time series-the shrinking of the state-space embedding dimension. The S-estimator imaging revealed a specific synchronization landscape in schizophrenia patients. Its main features included bilaterally increased synchronization over temporal brain regions and decreased synchronization over the postcentral/parietal region neighboring the midline. The synchronization topography was stable over the course of several months and correlated with the severity of schizophrenia symptoms. In particular, direct correlations linked positive, negative, and general psychopathological symptoms to the hyper-synchronized temporal clusters over both hemispheres. Along with these correlations, general psychopathological symptoms inversely correlated within the hypo-synchronized postcentral midline region. While being similar to the structural maps of cortical changes in schizophrenia, the S-maps go beyond the topography limits, demonstrating a novel aspect of the abnormalities of functional cooperation: namely, regionally reduced or enhanced connectivity. CONCLUSION/SIGNIFICANCE: The new method of multivariate synchronization significantly boosts the potential of EEG as an imaging technique compatible with other imaging modalities. Its application to schizophrenia research shows that schizophrenia can be explained within the concept of neural dysconnection across and within large-scale brain networks

    Brain connectivity alterations in early psychosis: from clinical to neuroimaging staging.

    Get PDF
    Early in the course of psychosis, alterations in brain connectivity accompany the emergence of psychiatric symptoms and cognitive impairments, including processing speed. The clinical-staging model is a refined form of diagnosis that places the patient along a continuum of illness conditions, which allows stage-specific interventions with the potential of improving patient care and outcome. This cross-sectional study investigates brain connectivity features that characterize the clinical stages following a first psychotic episode. Structural brain networks were derived from diffusion-weighted MRI for 71 early-psychosis patients and 76 healthy controls. Patients were classified into stage II (first-episode), IIIa (incomplete remission), IIIb (one relapse), and IIIc (two or more relapses), according to the course of the illness until the time of scanning. Brain connectivity measures and diffusion parameters (fractional anisotropy, apparent diffusion coefficient) were investigated using general linear models and sparse linear discriminant analysis (sLDA), studying distinct subgroups of patients who were at specific stages of early psychosis. We found that brain connectivity impairments were more severe in clinical stages following the first-psychosis episode (stages IIIa, IIIb, IIIc) than in first-episode psychosis (stage II) patients. These alterations were spatially diffuse but converged on a set of vulnerable regions, whose inter-connectivity selectively correlated with processing speed in patients and controls. The sLDA suggested that relapsing-remitting (stages IIIb, IIIc) and non-remitting (stage IIIa) patients are characterized by distinct dysconnectivity profiles. Our results indicate that neuroimaging markers of brain dysconnectivity in early psychosis may reflect the heterogeneity of the illness and provide a connectomics signature of the clinical-staging model

    Implications of the Anomalies in B_s^0-\bar{B}_s^0 Mixing for Anomalous Tensor Couplings

    Full text link
    Motivated by the recently observed anomalous large dimuon charge asymmetry in neutral B decays and the unexpected large CP phase in the mixing-induced CP asymmetry for B_s-->J/\psi\phi decay, we study the effects of the anomalous tensor couplings to pursue possible solution. With the constraints from the obsevables \phi^{J/\psi\phi}_s, a_{sl}^s and \Delta M_s, the parameter spaces are severely restricted. Numerically, we find the anomalies in B_s^0-\bar{B}_s^0 mixing system could be moderated simultaneously by the contributions induced by the color-singlet or color-octet tensor operators with their respective nontrivial new weak phase \phi_{T1}\approx28.0(15.6) degree or \phi_{T8}\approx-62.1(-74.2) degree and relevant strength parameters g_{T1}\approx6.7(8.5)\times10^{-2} or g_{T8}\approx1.9(2.4)\times10^{-2} for the CP-violating phase \phi^{J/\psi\phi}_s=-0.77(+0.29,-0.37)(-2.36(+0.37,-0.29)), respectively.Comment: 14pages, 2 figures, 3table

    Partial‐volume modeling reveals reduced gray matter in specific thalamic nuclei early in the time course of psychosis and chronic schizophrenia

    Get PDF
    The structural complexity of the thalamus, due to its mixed composition of gray and white matter, make it challenging to disjoint and quantify each tissue contribution to the thalamic anatomy. This work promotes the use of partial-volume-based over probabilistic-based tissue segmentation approaches to better capture thalamic gray matter differences between patients at different stages of psychosis (early and chronic) and healthy controls. The study was performed on a cohort of 23 patients with schizophrenia, 41 with early psychosis and 69 age and sex-matched healthy subjects. Six tissue segmentation approaches were employed to obtain the gray matter concentration/probability images. The statistical tests were applied at three different anatomical scales: whole thalamus, thalamic subregions and voxel-wise. The results suggest that the partial volume model estimation of gray matter is more sensitive to detect atrophies within the thalamus of patients with psychosis. However all the methods detected gray matter deficit in the pulvinar, particularly in early stages of psychosis. This study demonstrates also that the gray matter decrease varies nonlinearly with age and between nuclei. While a gray matter loss was found in the pulvinar of patients in both stages of psychosis, reduced gray matter in the mediodorsal was only observed in early psychosis subjects. Finally, our analyses point to alterations in a sub-region comprising the lateral posterior and ventral posterior nuclei. The obtained results reinforce the hypothesis that thalamic gray matter assessment is more reliable when the tissues segmentation method takes into account the partial volume effect

    N-acetylcysteine add-on treatment leads to an improvement of fornix white matter integrity in early psychosis: a double-blind randomized placebo-controlled trial

    Get PDF
    Mechanism-based treatments for schizophrenia are needed, and increasing evidence suggests that oxidative stress may be a target. Previous research has shown that N-acetylcysteine (NAC), an antioxidant and glutathione (GSH) precursor almost devoid of side effects, improved negative symptoms, decreased the side effects of antipsychotics, and improved mismatch negativity and local neural synchronization in chronic schizophrenia. In a recent double-blind randomized placebo-controlled trial by Conus et al., early psychosis patients received NAC add-on therapy (2700 mg/day) for 6 months. Compared with placebo-treated controls, NAC patients showed significant improvements in neurocognition (processing speed) and a reduction of positive symptoms among patients with high peripheral oxidative status. NAC also led to a 23% increase in GSH levels in the medial prefrontal cortex (GSHmPFC) as measured by (1)H magnetic resonance spectroscopy. A subgroup of the patients in this study were also scanned with multimodal MR imaging (spectroscopy, diffusion, and structural) at baseline (prior to NAC/placebo) and after 6 months of add-on treatment. Based on prior translational research, we hypothesized that NAC would protect white matter integrity in the fornix. A group x time interaction indicated a difference in the 6-month evolution of white matter integrity (as measured by generalized fractional anisotropy, gFA) in favor of the NAC group, which showed an 11% increase. The increase in gFA correlated with an increase in GSHmPFC over the same 6-month period. In this secondary study, we suggest that NAC add-on treatment may be a safe and effective way to protect white matter integrity in early psychosis patients

    Cannabis use in early psychosis is associated with reduced glutamate levels in the prefrontal cortex

    Get PDF
    Recent studies have shown that cannabis may disrupt glutamate (Glu) signaling depressing Glu tone in frequent users. Current evidence have also consistently reported lower Glu-levels in various brain regions, particularly in the medial prefrontal cortex (mPFC) of chronic schizophrenia patients, while findings in early psychosis (EP) are not conclusive. Since cannabis may alter Glu synaptic plasticity and its use is a known risk factor for psychosis, studies focusing on Glu signaling in EP with or without a concomitant cannabis-usage seem crucial

    Realistic optical cell modeling and diffraction imaging simulation for study of optical and morphological parameters of nucleus

    Get PDF
    Coherent light scattering presents complex spatial patterns that depend on morphological and molecular features of biological cells. We present a numerical approach to establish realistic optical cell models for generating virtual cells and accurate simulation of diffraction images that are comparable to measured data of prostate cells. With a contourlet transform algorithm, it has been shown that the simulated images and extracted parameters can be used to distinguish virtual cells of different nuclear volumes and refractive indices against the orientation variation. These results demonstrate significance of the new approach for development of rapid cell assay methods through diffraction imaging.ECU Open Access Publishing Support Fun
    corecore