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Schizophrenia is a neurodevelopmental disorder reflect-
ing a convergence of genetic risk and early life stress. 
The slow progression to first psychotic episode represents 
both a window of vulnerability as well as opportunity 
for therapeutic intervention. Here, we consider recent 
neurobiological insight into the cellular and molecular 
components of developmental critical periods and their 
vulnerability to redox dysregulation. In particular, the 
consistent loss of parvalbumin-positive interneuron 
(PVI) function and their surrounding perineuronal nets 
(PNNs) as well as myelination in patient brains is con-
sistent with a delayed or extended period of circuit insta-
bility. This linkage to critical period triggers (PVI) and 
brakes (PNN, myelin) implicates mistimed trajectories 
of brain development in mental illness. Strategically 
introduced antioxidant treatment or later reinforcement 
of molecular brakes may then offer a novel prophylactic 
psychiatry.
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Introduction

The protracted progression to psychosis1 represents both 
a window of vulnerability and opportunity for thera-
peutic intervention. In a general sense, many manifes-
tations of  the disease are thoughts, feelings or actions 
that are normal in childhood or early adolescence which 
become inadequate in adulthood. This supports a view 
that neural processes which are normally shaped dur-
ing various critical periods (CPs) in development fail to 
stabilize. Various basic affective, intellectual, and social 
cognitions, which should be consolidated during brain 
development, thus seem to remain open to fluctuations 
in adult patients.

In healthy development, convergent multisensory 
inputs are progressively selected in order to filter the 
salient ones and focus attention. This process is funda-
mental to establish “common sense” knowledge and “nat-
ural self-evidence” notions (eg, “the sky is blue and above 
the earth” or “young people will become old”) which 
are typically settled and confirmed during development. 
Their deficits lead to basic symptoms2 and disorders of 
the self  believed to be central to the phenomenology of 
schizophrenia (SZ; see reviews by Parnas3,4). They affect 
the core of subjective experience constituting the perma-
nent flow of consciousness.

One important aspect of  such anomalies concerns 
agency and ownership, most likely involving mistimed 
impulse conduction of  corollary discharge in central 
motor-sensory fibers, due to delays in myelination (as 
documented below). Indeed, the perception of  self  is 
in part the result of  differences in response to stimuli 
evoked from external sources and those generated by 
the subject—differences which are blurred if  corollary 
discharges are deficient.5,6 If  a CP were to remain open, 
perceptual incoherence and instabilities in basic knowl-
edge would lead to symptoms such as loss of  common 
sense. At a more complex level, ambivalence extending 
toward indecision about actions and unresolved con-
tradictory ideas (frequently observed in patients) may 
further reflect the failure to develop clear polarities 
between positive or negative affect evoked by interper-
sonal relationships.

Poorly filtered, multiple sensory inputs can become 
overwhelming and stress inducing. Impaired conver-
gence of interoceptive and exteroceptive sensory inputs 
may lead to a loose perception of “self” as observed in 
patients. At the same time, patients make strikingly origi-
nal connections between images, words, or ideas typical 
of poetic creativity seen in young people, who also tend 

mailto:hensch@mcb.harvard.edu?subject=


836

K. Q. Do et al

to make loose associations between unrelated sensory 
information, leading to unsuspected phantasmal produc-
tion. As Baudelaire once wrote, “genius is nothing more 
nor less than childhood recovered at will.” We propose 
that prolonged windows of plasticity manifest by incom-
plete CP closure may instead contribute to mental illness.

Here, we consider a modern neurobiological under-
standing of  the cellular and molecular determinants 
of  developmental CP as they relate to the pathophysi-
ology of  SZ. A  pivotal role for parvalbumin-positive 
interneuron (PVI) maturation in both CP opening and 
closure (by their surrounding perineuronal net [PNN] 
and myelination) on the one hand, and their impairment 
in SZ patients and animal models on the other, suggest 
various CP aspects could be perturbed in the disease. 
The issue is complicated in that synaptic plasticity itself  
is likely disrupted for genetic reasons7 and that myelin 
and long-range connectivity fail to develop normally. 
Redox dysregulation/oxidative stress reflecting complex 
interaction between genetic and environmental risk fac-
tors in the developmental impairment of  PVI/PNN and 
of  myelination will be highlighted. A consideration of 
SZ symptoms from the perspective of  impaired devel-
opmental trajectory may suggest optimal timing for pre-
ventive treatment with redox regulators/antioxidants, 
thus offering potentially novel strategies for preventive 
therapies.

Mechanisms of CP Brain Development

Perhaps the best-studied CP model is the enduring loss of 
responsiveness in primary visual (V1) cortex to a “lazy” or 
otherwise deprived eye. The behavioral consequence, ambly-
opia (poor visual acuity), afflicts 2%–5% of the human pop-
ulation and remains without a known cure in adulthood. 
From the initial discovery by Hubel and Wiesel over 50 years 
ago, a biological picture has emerged wherein axons serving 
the two eyes compete with each other upon first converging 
onto individual neurons in V1. Molecular tools have now 
begun to unravel the cellular mechanisms which control the 
onset and closure of such windows for cortical plasticity.8 
Overall, three key concepts have emerged (figure 1):

1.Excitatory-inhibitory (E-I) circuit balance is a trigger. 
Specific gamma-aminobutyric acid (GABA) circuit matu-
ration underlies the onset timing of plasticity and is shifted 
across brain regions consistent with the hierarchical, cas-
cading nature of development.9 Thus, premature gain-of-
function by pharmacological agents (benzodiazepines) 
can trigger precocious onset, whereas genetic (GAD65 
deletion) or environmental disruption of GABA circuit 
function (dark rearing, hearing loss) leads to a delayed 
plasticity. These manipulations are so powerful that they 
can determine whether an animal is before, at the peak, or 
past a plastic window regardless of chronological age. In 
other words, CP timing per se is plastic.

Among the diversity of inhibitory cell types, it is the PVI 
large basket cell which serves as the pivotal plasticity switch.9 
PVI mature at different rates across brain regions, contribut-
ing to the sequential timing of CP. They are dependent upon 
a variety of extrinsic factors for their health and mainte-
nance, such as brain-derived neurotrophic factor (BDNF), 
polysialylated-neural cell adhesion molecule (PSA-NCAM), 
or Otx2 homeoprotein, which appear just ahead of CP 
onset.8 Notably, PVI networks are interconnected via gap 
junctions10 and reciprocal GABAergic synapses, capable 
of synchronizing the excitatory state of large numbers of 
pyramidal neurons.11 By way of feedback and feed-forward 
inhibition, these fast-spiking interneurons exert precise 
temporal control on information flow, favoring summation 
and transmission of synchronously arriving, convergent 
input. As such, they allow the binding of information that 
reaches different pyramidal neurons during a defined and 
narrow time window,12 as reflected in γ-band oscillations 
(30–80 Hz)13–17 but can also modulate neuronal activity in 
the θ-band (4–8 Hz), as well as θ-γ coupling18,19 (figure 2). 
The maturation of neural synchrony has been suggestively 
linked to the development of cortical networks.20

2. Synaptic pruning and homeostasis mediate plasticity. 
Once PVI enter an optimal state, local circuit rewiring 

Fig. 1. Prolonged critical period plasticity as endophenotype. 
Schizophrenia symptoms may reflect delayed plasticity due to a 
failure of critical period onset/closure. Our hypothesis is that disease 
etiologies may dysregulate the expression of molecular brakes which 
normally follow parvalbumin-positive interneuron (PVI) maturation 
and extend developmental plasticity. Ultimately, this would 
destabilize circuit function in the face of undesirable information, 
as seen in mental illness. A common mechanism impacting PVI/
perineuronal nets/myelin is redox dysregulation, which represents 
a novel target for preventive neurodevelopmental intervention. 
Alternatively, once PVI functional impairment is detected (eg, 
mismatch negativity [MMN], γ-oscillations), a supplemental 
reinforcement of molecular brakes on plasticity may be considered.
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in response to sensory experience is enabled. PVI are 
the first responders to discordant sensory input, shifting 
their visual response rapidly.8 Subsequently, a biochemi-
cal sequence of synaptic pruning and homeostasis is trig-
gered in pyramidal cells8,9: initially freeing synaptic space 
through the action of secreted proteases (tissue-type plas-
minogen activator, tPA) to cleave cell adhesion molecules, 
synapses, and axons, prior to sprouting new connections 
through homeostatic growth processes involving tumor 
necrosis factor alpha (TNFα) and protein synthesis.

3. Molecular “brakes” limit adult plasticity to stabilize 
neural networks initially sculpted by experience. As PVI 
mature, they gradually acquire an extracellular coating, 
called the PNN, which tightly encapsulates the PVI cell 
body and proximal neurites. In other words, CP closure 
may reflect an active process on top of the long-held 
view of declining plasticity factors. A growing number 
of late-expressing, brake-like factors act to limit exces-
sive circuit rewiring in adulthood. These include struc-
tural obstacles which physically prevent neurite pruning 
and outgrowth, such as PNN or myelin in the extracel-
lular matrix.8,21 Both chondroitin sulfate proteoglycans 
in the PNN and inhibitory myelin molecules bind to the 
Nogo receptor (NgR),22 which acts in a complex with 
immune genes such as PirB to restrict CP plasticity.23,24 
In addition, functional brakes (eg, Lynx1)25 can dampen 
neuromodulatory systems (eg, acetylcholine, serotonin) 
which endogenously regulate E-I circuit balance.

Windows of plasticity, therefore, arise between the 
maturation of an optimal E-I balance controlling the 
machinery of synaptic pruning and a later emerging con-
solidating set of brake-like factors, which can be reversed 
(figure  1). Notably, the same principles are repeatedly 
being observed across brain regions. Adult spatial learn-
ing and object recognition reflect bistable PVI states in 
hippocampal area CA326, focally recapitulating basic 
CP mechanism throughout life. Adult prefrontal cor-
tex (PFC) encodes acoustic (music) preferences estab-
lished during a CP early in life and is rendered malleable 
again later by histone deacetylase (HDAC) inhibitors.27 
Interestingly, lifting this epigenetic brake (with valproate) 
in mice renews prefrontal neuron recruitment and has 
been successfully applied to healthy human adults learn-
ing absolute pitch discrimination.28 The basic cellular 
principles defined in mouse brain may, therefore, trans-
late to humans.

Relevance of CP Mechanism for SZ

PVI/PNN Impairment

Compelling evidence suggests an imbalance between 
glutamatergic excitation and GABAergic inhibition in 
SZ.29,30 Anomalies associated with PVI are a hallmark 
of the disease, including their reduced density in the hip-
pocampal formation31,32 and alterations at the level of 
basket and chandelier cells in the dorsolateral prefrontal 

cortex (DLPFC) of postmortem brains.33 Moreover, the 
extracellular matrix (PNN) that surrounds most PVI is 
weakened in the DLPFC,34 entorhinal cortex, and amyg-
dala of SZ patients.35 Current data suggest an impaired 
PVI maturation rather than a deficit due to the chronic 
nature of the illness. Therefore, dysfunction of the PVI 
network may lead to abnormal neuronal activity in 
patients, including oscillatory activity within θ, β, and 
γ ranges.36–38 Ultimately, interneuron dysfunction could 
contribute to altered sensory perception,39 deficits in 
working memory,18,40 attention,41 and learning.42

Recent studies have revealed anomalies in hippocam-
pal and/or prefrontal PVI in many preclinical animal 
models aiming to reproduce genetic vulnerabilities43–46 
or environmental risk factors47 such as prenatal mater-
nal stress,48 maternal and perinatal immune challenge,49,50 
hypoxia,51,52 early-life iron deficiency,53 maternal sepa-
ration,54 and social isolation.55,56 Similarly, nongenetic 
developmental models also result in altered prefrontal 
PVI.57,58

Oligodendrocyte/Myelination Impairment

Convergent evidence points to oligodendrocytes and 
myelination defects in SZ59–61 both at the neurocytochem-
ical and transcriptomic, as well as neuroimaging levels. 
Structural alterations of myelinated fibers are reported 
in gray and white matter of PFC and caudate nucleus of 
patients.62 Most studies find a decrease in oligodendro-
cyte density in thalamic nuclei and PFC.63–66 In the latter, 
an age-related increase in number of mature oligodendro-
cytes normally observed in control subjects is absent in 
SZ patients.67 Microarray analysis of patients’ prefrontal 
and anterior cingulate cortices reveal a reduced expres-
sion of several genes related to myelin and oligodendro-
cytes68–70 and an altered expression of genes coding for 
cell-cycle maintenance or arrest.71 Altogether, these find-
ings point to impaired oligodendrocyte maturation and 
myelination.

Such anomalies in SZ could affect axonal integrity and 
conduction velocity72 with a consequence of disrupting 
temporal control over long-range brain synchronization. 
Studies using magnetic resonance techniques such as dif-
fusion tensor imaging (DTI) also suggest abnormal white 
matter along different fiber tracts, including within and 
between frontal and temporal areas in SZ.73–75 Although 
less consistent than in chronic patients, white matter 
anomalies are also observed in first-episode patients and 
ultra high-risk subjects.73,75,76 In summary, imaging data 
indicate that white matter deficits are present before/at ill-
ness onset and persist in chronic SZ patients, suggesting a 
neurodevelopmental component to this impairment.

Vulnerability to Redox Dysregulation/Oxidative Stress

Oxidative stress is defined as an imbalance between pro-
oxidants and antioxidants, resulting in macromolecular 
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damage and disruption of redox signaling and control. 
Recent advances in redox biology show that thiol/disul-
fide redox systems are regulated under dynamic, nonequi-
librium conditions, with distinct redox potentials among 
subcellular compartments. Apart from traditional “redox 
signaling” used to describe processes in which a specific 
oxidative signal is conveyed through a specific redox ele-
ment to direct a particular cellular response (eg, NF-E2-
related factor-2 [Nrf-2] pathway), many general signaling 
systems including kinases and transmembrane ionopores 
(eg, N-methyl-D-Aspartate-receptor [NMDA-R]) can be 
regulated by “redox-sensing” thiols of critical proteins in 
the pathway.77

Both redox sensing and redox signaling use thiol 
switches, especially cysteine (Cys) residues in pro-
teins which are sensitive to covalent or noncovalent 
modification (ie, reversible oxidation, nitrosylation, 
glutathionylation), leading to structural and func-
tional alteration of  target proteins. This has led to 
the emerging concept of  “orthogonal control of  sig-
nal transduction systems by redox-sensing mecha-
nisms.”78 Moreover, because redox potentials are 
controlled differently in subcellular compartments, 
the same signaling mechanism can be differentially 
controlled by the prevailing local redox environment. 
This thiol-based redox regulation has crucial impor-
tance in nervous tissues known to present complex 
compartmentalization.

PVI/PNN Vulnerability

To support high-frequency neuronal synchronization, 
fast-spiking PVI are energy demanding. This requires 
optimal mitochondrial performance79 with enhanced 
metabolic activity and oxidative phosphorylation80 lead-
ing to elevated mitochondria-generated reactive oxygen 
species (ROS).81 Consequently, PVI need well-regulated 
antioxidant systems to neutralize ROS and maintain 
proper redox state. These cells are vulnerable to redox 
dysregulation, whether induced by a compromised anti-
oxidant system or ROS overproduction (figure 2).

In a transgenic mouse model (Gclm KO) carrying low 
levels of the main nonprotein cellular redox regulator 
and antioxidant, glutathione (GSH), similar to some SZ 
patients,82–84 a deficit in prefrontal and hippocampal PVI 
is observed, impairing high-frequency neuronal synchro-
nization.85–87 Compromised GSH synthesis restricted only 
to PVI is sufficient to affect these cells86 and oxidative 
stress precedes the PVI deficit.87 Under these conditions 
of PVI-specific redox dysregulation, CP plasticity (as 
measured in V1) is notably prolonged concomitant with 
their loss of PNN.88

PVI can also be affected when antioxidant systems 
other than GSH are compromised. A reduced number of 
PVI is observed in mice bearing a deletion of selenopro-
tein P, a glycoprotein with antioxidant properties89 or for 
PGC-1α, a transcription factor regulating mitochondria 
function and ROS metabolism.90 Furthermore, superoxide 

Fig. 2. Impact of oxidative stress/redox dysregulation on microcircuits. Schematic representation of the impact of oxidative stress/redox 
dysregulation on cortical microcircuits, including excitatory pyramidal and inhibitory parvalbumin-positive interneuron (PVI) connected 
reciprocally and supporting γ-oscillations. Oxidative stress/redox dysregulation interacts with inflammatory microglial cells, activating 
them, and with the N-methyl-d-aspartate receptors, reducing their activity, in both cases leading to a damaging potentiating effect. As a 
consequence, PVI surrounded by their perineuronal nets and myelin-forming oligodendrocytes are impaired, as manifested by alterations 
of local oscillations and distant synchronization. These cellular and molecular changes are known to alter critical periods timing. 
Likewise, microcircuits are affected by cholinergic and by catecholaminergic inputs.
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overproduction by nicotinamide adenine dinucleotide 
phosphate reduced form (NADPH) oxidase (NOX) is 
also deleterious to PVI,91 and NOX inhibition prevents 
the PVI impairment induced by social isolation.56

Most importantly, prefrontal cortical PVI are more vul-
nerable to a redox dysregulation during postnatal devel-
opment than later in life. A pharmacologically induced 
transient postnatal deficit in GSH yields both immediate 
and long-term decreased PVI density in anterior cingu-
late cortex (ACC).92–94 In Gclm-KO mice,95 administration 
of a dopamine reuptake inhibitor (GBR-12909), which 
partially mimics dopamine release during psychosocial 
stress96 and produces ROS via the catabolism of dopa-
mine,97,98 permanently decreases PVI density in the ACC 
when applied during postnatal development, but not in 
adulthood.85 Thus, immature PVI may have a less robust 
antioxidant defense system than mature cells.

Alternatively, molecular mechanisms underlying PVI 
maturation may be highly sensitive to a redox imbal-
ance. Interestingly, the vulnerability of prefrontal imma-
ture PVI is associated with the absence of fully mature 
PNN, which protects these cells against oxidative stress.86 
In turn, excess oxidative stress also affects PNN,86 which 
reciprocally impact PVI. Indeed, the maturation and phe-
notypic maintenance of PVI requires translocation of a 
noncell autonomous homeobox protein, Otx2, through 
its affinity with PNN.99,100

One interesting example of relevance to SZ is the role 
of Clock genes in the neocortex. Circadian rhythms have 
been shown to regulate redox homeostasis in the brain, 
and disruption of circadian genes causes neuronal oxi-
dative damage.101 Aberrant circadian rhythmicity has 
long been linked to mental illness, and very recent work 
identifies a postnatal emergence of rhythmic gene expres-
sion outside the suprachiasmatic nucleus.102 Maturation 
of PVI is particularly sensitive to Clock/Bmal gene dele-
tion with the consequence of protracted CP timing into 
adulthood. Cell-specific transcriptome profiling of PVI 
by FACS reveals altered expression of genes downstream 
of CLOCK related to the respiratory chain (eg, Cox 
and Nduf family genes) and redox regulation (eg, Gpx4). 
Thus, circadian clock genes may preserve PVI integrity 
and prevent the manic behaviors observed when they are 
disrupted.

A role for redox dysregulation/oxidative stress in the 
developmental impairment of PVI has been further sub-
stantiated by recent studies on experimental neurode-
velopmental models that do not directly manipulate the 
redox system. First, the widely studied neonatal ventral 
hippocampal lesion model also displays oxidative stress 
and PVI defects, both of which are prevented by juvenile 
and adolescent treatment with the antioxidant and GSH 
precursor, N-acetylcysteine (NAC).103 Second, a single 
injection of the DNA-alkylating agent methylazoxy-
methanol acetate (MAM) during pregnancy, which also 
causes SZ phenotypes in adult rats, leads to anomalies 

in PVI and neuronal synchronization.57,104 MAM-treated 
rats show decreased brain GSH levels105 and increased 
oxidative stress (A. A. Grace and K. Q. Do, unpublished 
results, 2014).

In the MAM model, a reduction in ventral hippocam-
pal PV expression is sufficient to induce an augmented 
dopaminergic system function and behavioral hyper-
responsivity to amphetamine.106 Moreover, evidence in 
patients33 and in MAM rats suggest that in the PFC there 
is a general decrease in PV levels rather than PVI loss, 
whereas in hippocampus it appears that neuronal loss 
occurs.107 Third, genetic models (eg, DISC1, PRODH, 
G71) all exhibit elevated oxidative stress consistent with 
their PVI abnormalities. In addition, preliminary results 
in collaboration with the Coyle and La Mantia labs, 
respectively, reveal oxidative stress-induced PVI/PNN 
loss in d-serine racemase KO and 22q11 mouse models 
(K. Q. Do, 44th US Soc for Neuroscience, 2014). Together, 
these studies demonstrate that redox dysregulation dur-
ing a critical developmental period can disrupt normal 
PVI maturation representing one core pathophysiological 
mechanism in SZ.

Oligodendrocyte Sensitivity to Redox State

Oligodendrocytes are sensitive to redox dysregulation and 
oxidative stress due to their intrinsic properties and func-
tions. During the myelination process, they have a high 
metabolic rate to produce and maintain membranes.108–110 
High metabolic activity is known to generate copious 
amounts of ROS,111 whereas oligodendrocytes display 
surprisingly low GPx activity and intrinsically low GSH 
levels.112,113

In SZ patients, a direct role for redox control of myelin 
is seen in the positive correlation between prefrontal GSH 
levels and functional anisotropy along the cingulum bun-
dle, which connects the ACC to limbic structures.114 The 
importance of redox control for white matter integrity 
and oligodendrocyte development is further supported 
by animal models and in vitro research. Redox state con-
trols oligodendrocyte maturation as well as the switch 
between proliferation (reduced state) and differentiation 
(oxidized state).114,115

Abnormal redox control would interfere with oligoden-
drocyte development. Consistent with this, Gclm-KO mice 
bearing a 70% GSH deficit within brain and increased 
oxidative stress marks in the PFC and ventral hippocam-
pus85,87 have lower levels of mature oligodendrocytes and 
myelin in the peripubertal period114 (figure 2). Although 
myelination reaches similar levels in adult Gclm-KO and 
wild-type mice, DTI reveals persistent impairment of 
white matter integrity and reduced conduction velocity in 
the fornix and anterior commissure.116

At the cellular level, GSH deficiency in oligodendrocyte 
progenitors leads to cell-cycle arrest and reduces prolifer-
ation which can be reversed by the antioxidant NAC.114,115 
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At a molecular level, the switch from proliferation to 
early differentiation is controlled by the platelet-derived 
growth factor receptor (PDGFR-Fyn) pathway.114,117 
Nonreceptor tyrosine kinase, Fyn, is activated by redox 
dysregulation,117 and interestingly, is impaired in early 
psychosis patients associated with a vulnerability to 
redox dysregulation.114 Postmortem studies in the PFC of 
SZ patients also reveal abnormal Fyn expression (Stanley 
database).118 Oxidative stress/abnormal redox control 
during development could therefore contribute to myelin 
disruptions associated with SZ.

Anomalies of Plasticity in SZ

Pathophysiological changes in SZ are thus consistent 
with a removal of “brakes” on plasticity, such as the PNN 
loss, altered E-I balance, or myelin deficits. All these fac-
tors are induced by redox dysregulation/oxidative stress 
among others, which may then yield prolonged network 
instability.88 Thus, mistimed developmental trajectories 
of brain plasticity may underlie in part the pathogen-
esis of SZ. Although limited to date, there is emergent 
evidence recently reporting dysfunctional plasticity in 
SZ.119–122 Deficits in long-term potentiation-like plastic-
ity in SZ patients probed by transcranial direct current 
stimulation are notably restricted to chronic patients, 
whereas first onset patients do not differ significantly 
from healthy controls with a trend toward increased plas-
ticity.123 Excessive plastic states likely precede the progres-
sive degenerative process as in other animal models and 
brain disorders.25,124

Outlook for Preventive Developmental Therapies

Early detection and early intervention in psychotic dis-
orders has become a major focus both in clinical and 
translational research in psychiatry. The considerations 
discussed above strongly support this strategy. They high-
light mechanisms and drug targets which might modify 
disease progression or even contribute to prevention, and 
pave the way for biomarkers needed for early detection 
and use as efficacy endpoints (apart from clinical symp-
toms) in clinical trials.

Two noninvasive biomarkers might be worth explor-
ing: (1) anomalies of γ-oscillations as a robust marker of 
the PVI microcircuit and (2) anomalies of fiber tract con-
nectivity as measured by DTI. As discussed above, oxida-
tive stress or redox dysregulation contribute crucially to 
PVI and myelin impairment in SZ. Moreover, as reviewed 
in Steullet et al,125 dysregulation of redox homeostasis is 
fully reciprocal to neuroinflammation and NMDA-R 
hypofunction (figure 2). This triad constitutes one central 
pathophysiological “hub” upon which various genetic 
and environmental risk factors converge during neuro-
development, leading to structural and functional con-
nectivity impairments. Drugs targeting the triadic hub 

of oxidative stress, neuroinflammation, or NMDA-R 
hypofunction125 would be promising candidates to pre-
vent deleterious effects on cortical and hippocampal PVI 
and oligodendrocytes/myelin. As such treatments (eg, 
omega-3, sulforaphane, NAC) should be applied in early 
phases of the illness, they should be devoid of serious 
side-effects. Adolescent treatment with atypical antipsy-
chotics (risperidone, clozapine) in the prenatal immune 
activation model can also prevent hippocampal volume 
loss and lateral ventricle enlargement as well as behav-
ioral abnormalities.126 However, whether this is mediated 
through PVI/myelin and CP plasticity is unknown and 
their serious side effects would temper their use from a 
preventive perspective.

Converging evidence also points to membrane phos-
pholipid and polyunsaturated fatty acid (PUFA) defects 
in early course and chronic SZ.127 As membrane PUFAs 
are highly susceptible to free radical insults, increased 
oxidative stress may be one of the mechanisms respon-
sible for membrane PUFA reduction. Indeed, oxidative 
stress in first-episode SZ is associated with decreased 
PUFA content and increased breakdown products of 
membrane lipids,128 possibly with a familial basis.129,130 
In particular, decreased membrane PUFA levels are 
associated with increased levels of total lipid peroxides, 
decreased levels of vitamin E, and increased severity of 
negative symptoms.131,132 The use of PUFA, particularly 
omega-3, is a potential alternative and adjunct to current 
antipsychotics treatments. Omega-3 fatty acids are effec-
tive in reducing oxidative stress in preclinical models133,134 
and dietary supplementation may be beneficial in psychi-
atric conditions.135 Omega-3 might be most promising in 
preventing the transition to psychosis for at-risk mental 
state subjects.136

Sulforaphane is a dietary isothiocyanate found in broc-
coli sprouts and has gained attention as a natural, and 
safe, anticancer compound.137–140 Evidence suggests that 
sulforaphane is able to reduce oxidative stress by acti-
vating the Nrf-2 antioxidant response element pathway, 
upregulating phase II detoxification enzymes and anti-
oxidant proteins.141 Sulforaphane was shown to protect 
against antipsychotic-induced oxidative stress in dopami-
nergic neuroblastoma cells by increasing GSH and qui-
none oxidoreductase (NQO1) activity.142 In mice injected 
with phencyclidine, sulforaphane attenuated prepulse 
inhibition (PPI) deficits in a dose-dependent manner, as 
well as reducing hyperlocomotion at higher doses.143

NAC, known as a GSH precursor, also has antioxi-
dant and anti-inflammatory properties per se and can 
regulate glutamatergic neurotransmission. It represents a 
safe and potential compound for the prevention or treat-
ment of SZ and other psychiatric disorders.144 NAC is 
deacetylated to form cysteine, the rate-limiting precursor 
of GSH, and therefore yields upregulation of GSH syn-
thesis when cells face an excess of ROS production. NAC 
also participates to the control of the intracellular redox 
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state by supplying cysteine into the cystine/cysteine redox 
couple.145

In Gclm-KO mice, NAC prevents PVI and PNN deficits 
induced by an oxidative insult during postnatal develop-
ment85 and normalizes most of the neurochemical pro-
files, including the glutamine/glutamate ratio known to 
be altered in a similar way in first-episode SZ patients.146 
Likewise, NAC reduces oxidative stress, protects pre-
frontal PVI, and prevents deficits in MMN and PPI in 
the developing rat neonatal ventral hippocampal lesion 
model which is independent of redox manipulation and 
shows E-I imbalance.103

NAC also prevents myelin impairment following a 
maternal immune challenge,147 reestablishes normal func-
tion of the cystine/glutamate antiporter and GSH levels 
in MAM-injected rats,148 normalizes extracellular gluta-
mate levels, and attenuates behavioral anomalies in phen-
cyclidine-treated rats.149 It reduces oxidative stress, rescues 
abnormal behavioral phenotype in G72/G30 transgenic 
mice,150 and reverses the social isolation-induced changes 
in corticostriatal monoamine levels.151 Thus, NAC has 
beneficial effects across a very diverse panel of animal 
models relevant to SZ.

In a first randomized double-blind placebo-controlled 
trial, an add-on treatment of NAC in chronic patients 
diminished negative symptoms and improved global 
functioning.152 Two additional studies also demonstrate 
that chronic patients improved with supplemental NAC, 
particularly in their negative symptoms.153,154 Moreover, 
NAC normalized neuronal activity and connectivity 
and improved MMN,155 an auditory-related, NMDA-
dependent evoked potential typically impaired in SZ.156 
Although not performed during development, these stud-
ies can be considered as a proof-of-concept, pointing to 
the efficacy of an antioxidant and possibly favoring the 
closure of a pathological CP.

NAC also increased phase synchronization of neuro-
nal activity over the left parieto-temporal, the right tem-
poral, and the bilateral prefrontal regions.157 However, 
the beneficial effect of NAC has to be taken with caution 
because the current data are based on only a few stud-
ies showing relatively moderate clinical improvement in 
chronic SZ patients, probably due to the low bioavailabil-
ity and membrane permeability of NAC which enters the 
brain at a very modest rate.158 The development of other 
molecules with better bioavailability and blood-brain 
barrier permeability is therefore needed.

Interestingly, Du and Grace159 have reported that 
peripubertal administration of diazepam prevents the 
increase in dopamine neuron activity and blunts the 
behavioural hyper-responsivity to amphetamine in the 
developmental MAM rats. This effect of diazepam may 
be mediated by normalizing PVI/CP plasticity because 
CP delay in the GAD65 deletion model can be rescued by 
enhancing GABA transmission directly with diazepam.160

Because the disruption of PVI maturation and myelin-
ation would combine to delay or prolong CP plasticity 
(figure 1), it may also be useful to strategically introduce 
well-timed brakes on plasticity or to lift them as needed 
(as in amblyopia recovery21). Several candidate factors 
have recently been identified,8 including PNN-promoting 
transcription factors (Otx2),94 modulators of cholin-
ergic transmission (Lynx1),25 or epigenetic regulators 
(HDAC).161 An intriguing target may be the NgR/PirB 
signalling complex which interacts with both chondroi-
tin sulfate proteoglycans in the PNN as well as myelin 
molecules.22,23 Notably, the plasticity modulating effect 
of NgR deletion has recently been traced to PVI circuits 
specifically.162 Further methods to modulate PVI matura-
tional state, ideally from the blood periphery are desirable 
as therapeutic agents. The peculiar localization of noncell 
autonomous factors, such as Otx2 synthesis within the 
accessible choroid plexus,163 is particularly appealing.

Conclusions

Commonly observed abnormalities in the PVI and 
myelin of  SZ patients or associated animal mod-
els would predict altered levels of  brain plasticity, 
such as greater perceptual learning in SZ patients.164 
Proper timing of  redox regulation is crucial to con-
trol the proliferation and differentiation of  PVI and 
oligodendrocytes, which in turn contribute to CP tim-
ing. Therapeutic approaches aimed at thwarting the 
emerging redox imbalance may efficiently prevent the 
impairment of  these CP triggers and brakes underly-
ing developmental trajectories of  cognitive function. 
Such approaches, including antioxidants/redox modu-
lators, cognitive interventions in childhood and adoles-
cence, or enhancement of  molecular brakes thereafter 
might become viable strategies toward prophylactic 
psychiatry.165
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