876 research outputs found

    CUT-PCR: CRISPR-mediated, ultrasensitive detection of target DNA using PCR

    Get PDF
    Circulating tumor DNA (ctDNA) has emerged as a tumor-specific biomarker for the early detection of various cancers. To date, several techniques have been devised to enrich the extremely small amounts of ctDNA present in plasma, but they are still insufficient for cancer diagnosis, especially at the early stage. Here, we developed a novel method, CUT (CRISPR-mediated, Ultrasensitive detection of Target DNA)-PCR, which uses CRISPR endonucleases to enrich and detect the extremely small amounts of tumor DNA fragments among the much more abundant wild-type DNA fragments by specifically eliminating the wild-type sequences. We computed that by using various orthologonal CRISPR endonucleases such as SpCas9 and FnCpf1, the CUT-PCR method would be applicable to 80% of known cancer-linked substitution mutations registered in the COSMIC database. We further verified that CUT-PCR together with targeted deep sequencing enables detection of a broad range of oncogenes with high sensitivity (<0.01%) and accuracy, which is superior to conventional targeted deep sequencing. In the end, we successfully applied CUT-PCR to detect sequences with oncogenic mutations in the ctDNA of colorectal cancer patients' blood, suggesting that our technique could be adopted for diagnosing various types of cancer at early stages

    Fabrication of endothelial cell-laden carrageenan microfibers for microvascularized bone tissue engineering applications

    Get PDF
    ecent achievements in the area of tissue engineering (TE) have enabled the development of three-dimensional (3D) cell-laden hydrogels as in vitro platforms that closely mimic the 3D scenario found in native tissues. These platforms are extensively used to evaluate cellular behavior, cell-cell interactions, and tissue-like formation in highly defined settings. In this study, we propose a scalable and flexible 3D system based on microsized hydrogel fibers that might be used as building blocks for the establishment of 3D hydrogel constructs for vascularized bone TE applications. For this purpose, chitosan (CHT) coated κ-carrageenan (κ-CA) microfibers were developed using a two-step procedure involving ionotropic gelation (for the fiber formation) of κ-CA and its polyelectrolyte complexation with CHT (for the enhancement of fiber stability). The performance of the obtained fibers was assessed regarding their swelling and stability profiles, as well as their ability to carry and, subsequently, promote the outward release of microvascular-like endothelial cells (ECs), without compromising their viability and phenotype. Finally, the possibility of assembling and integrating these cell-laden fibers within a 3D hydrogel matrix containing osteoblast-like cells was evaluated. Overall, the obtained results demonstrate the suitability of the microsized κ-CA fibers to carry and deliver phenotypically apt microvascular-like ECs. Furthermore, it is shown that it is possible to assemble these cell-laden microsized fibers into 3D heterotypic hydrogels constructs. This in vitro 3D platform provides a versatile approach to investigate the interactions between multiple cell types in controlled settings, which may open up novel 3D in vitro culture techniques to better mimic the complexity of tissues.Authors thank the Portuguese Foundation for Science and Technology (FCT) for the personal grants SFRH/BD/42968/2008 through the MIT-Portugal Program (SMM) and SFRH/BD/64070/2009 (EGP). The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement no REGPOT-CT2012-316331-POLARIS and MIT/ECE/0047/2009 project

    A phase II study of paclitaxel and capecitabine as a first-line combination chemotherapy for advanced gastric cancer

    Get PDF
    Paclitaxel and capecitabine, which have distinct mechanisms of action and toxicity profiles, have each shown high activity as single agents in gastric cancer. Synergistic interaction between these two drugs was suggested by taxane-induced upregulation of thymidine phosphorylase. We, therefore, evaluated the antitumour activity and toxicities of paclitaxel and capecitabine as first-line therapy in patients with advanced gastric cancer (AGC). Patients with histologically confirmed unresectable or metastatic AGC were treated with capecitabine 825 mg m−2 p.o. twice daily on days 1–14 and paclitaxel 175 mg m−2 i.v. on day 1 every 3 weeks until disease progression or unacceptable toxicities. Between June 2002 and May 2004, 45 patients, of median age 57 years (range=38–73 years), were treated with the combination of capecitabine and paclitaxel. After a median 6 cycles (range=1–9 cycles) of chemotherapy, 43 were evaluable for toxicity and response. A total of 2 patients showed complete response and 20 showed partial response making the overall response rate 48.9% (95% CI=30.3–63.5%). After a median follow-up of 42.2 months (range=31.2–54.3 months), median time to progression was 5.6 months (95% CI=3.9–7.2 months) and median overall survival was 11.3 months (95% CI=8.1–14.4 months). Grade 3 or 4 adverse events include neutropaenia (46.5% of patients), hand–foot syndrome (9.3%), arthralgia (9.3%), and asthenia (4.7%). There was no neutropaenic fever or treatment-related deaths. Paclitaxel and capecitabine combination chemotherapy was active and highly tolerable as a first-line therapy for AGC

    An international collaborative evaluation of central serous chorioretinopathy: different therapeutic approaches and review of literature. The European Vitreoretinal Society central serous chorioretinopathy study

    Get PDF
    Purpose: To study and compare the efficacy of different therapeutic options for the treatment of central serous chorioretinopathy (CSCR). Methods: This is a nonrandomized, international multicentre study on 1719 patients (1861 eyes) diagnosed with CSCR, from 63 centres (24 countries). Reported data included different methods of treatment and both results of diagnostic examinations [fluorescein angiography and/or optical coherent tomography (OCT)] and best-corrected visual acuity (BCVA) before and after therapy. The duration of observation had a mean of 11 months but was extended in a minority of cases up to 7 years. The aim of this study is to evaluate the efficacy of the different therapeutic options of CSCR in terms of both visual (BCVA) and anatomic (OCT) improvement. Results: One thousand seven hundred nineteen patients (1861 eyes) diagnosed with CSCR were included. Treatments performed were nonsteroidal anti-inflammatory eye drops, laser photocoagulation, micropulse diode laser photocoagulation, photodynamic therapy (PDT; Standard PDT, Reduced-dose PDT, Reduced-fluence PDT), intravitreal (IVT) antivascular endothelial growth factor injection (VEGF), observation and other treatments. The list of the OTHERS included both combinations of the main proposed treatments or a variety of other treatments such as eplerenone, spironolactone, acetazolamide, beta-blockers, anti-anxiety drugs, aspirin, folic acid, methotrexate, statins, vitis vinifera extract medication and pars plana vitrectomy. The majority of the patients were men with a prevalence of 77%. The odds ratio (OR) showed a partial or complete resolution of fluid on OCT with any treatment as compared with observation. In univariate analysis, the anatomical result (improvement in subretinal fluid using OCT at 1 month) was favoured by age <60 years (p < 0.005), no previous observation (p < 0.0002), duration less than 3 months (p < 0.0001), absence of CSCR in the fellow eye (p = 0.04), leakage outside of the arcade (p = 0.05) and fluid height >500 \u3bcm (p = 0.03). The OR for obtaining partial or complete resolution showed that anti-VEGF and eyedrops were not statistically significant; whereas PDT (8.5), thermal laser (11.3) and micropulse laser (8.9) lead to better anatomical results with less variability. In univariate analysis, the functional result at 1 month was favoured by first episode (p = 0.04), height of subretinal fluid >500 \u3bcm (p < 0.0001) and short duration of observation (p = 0.02). Finally, there was no statistically significant difference among the treatments at 12 months. Conclusion: Spontaneous resolution has been described in a high percentage of patients. Laser (micropulse and thermal) and PDT seem to lead to significant early anatomical improvement; however, there is little change beyond the first month of treatment. The real visual benefit needs further clarification

    hTID-1 defines a novel regulator of c-Met Receptor signaling in renal cell carcinomas

    Get PDF
    The c-Met receptor tyrosine kinase (MetR) is frequently overexpressed and constitutively phosphorylated in a number of human malignancies. Activation of the receptor by its ligand, hepatocyte growth factor (HGF), leads to increased cell proliferation, motility, survival and disruption of adherens junctions. In this study, we show that hTid-1, a DNAJ/Hsp40 chaperone, represents a novel modulator of the MetR signaling pathway. hTid-1 is a co-chaperone of the Hsp70 family of proteins, and has been shown to regulate a number of cellular signaling proteins including several involved in tumorigenic and apoptotic pathways. In this study we demonstrate that hTid-1 binds to unphosphorylated MetR and becomes dissociated from the receptor upon HGF stimulation. Overexpression of the short form of hTid-1 (hTid-1S) in 786-0 renal clear cell carcinomas (RCCs) enhances MetR kinase activity leading to an increase in HGF-mediated cell migration with no discernible effect on cell proliferation. By contrast, knockdown of hTid-1 markedly impairs both the onset and amplitude of MetR phosphorylation in response to HGF without altering receptor protein levels. hTid-1-depleted cells display defective migratory properties, coincident with inhibition of ERK/MAP kinase and STAT3 pathways. Taken together, our findings denote hTid-1S as an essential regulatory component of MetR signaling. We propose that the binding of hTid-1S to MetR may stabilize the receptor in a ligand-competent state and this stabilizing function may influence conformational changes that take place during the catalytic cycle that promote kinase activation. Given the prevalence of HGF/MetR pathway activation in human cancers, targeted inhibition of hTid-1 may be a useful therapeutic in the management of MetR-dependent malignancies

    Design and Simulated Performance of Calorimetry Systems for the ECCE Detector at the Electron Ion Collider

    Full text link
    We describe the design and performance the calorimeter systems used in the ECCE detector design to achieve the overall performance specifications cost-effectively with careful consideration of appropriate technical and schedule risks. The calorimeter systems consist of three electromagnetic calorimeters, covering the combined pseudorapdity range from -3.7 to 3.8 and two hadronic calorimeters. Key calorimeter performances which include energy and position resolutions, reconstruction efficiency, and particle identification will be presented.Comment: 19 pages, 22 figures, 5 table

    ECCE Sensitivity Studies for Single Hadron Transverse Single Spin Asymmetry Measurements

    Full text link
    We performed feasibility studies for various single transverse spin measurements that are related to the Sivers effect, transversity and the tensor charge, and the Collins fragmentation function. The processes studied include semi-inclusive deep inelastic scattering (SIDIS) where single hadrons (pions and kaons) were detected in addition to the scattered DIS lepton. The data were obtained in {\sc pythia}6 and {\sc geant}4 simulated e+p collisions at 18 GeV on 275 GeV, 18 on 100, 10 on 100, and 5 on 41 that use the ECCE detector configuration. Typical DIS kinematics were selected, most notably Q2>1Q^2 > 1 GeV2^2, and cover the xx range from 10410^{-4} to 11. The single spin asymmetries were extracted as a function of xx and Q2Q^2, as well as the semi-inclusive variables zz, and PTP_T. They are obtained in azimuthal moments in combinations of the azimuthal angles of the hadron transverse momentum and transverse spin of the nucleon relative to the lepton scattering plane. The initially unpolarized MonteCarlo was re-weighted in the true kinematic variables, hadron types and parton flavors based on global fits of fixed target SIDIS experiments and e+ee^+e^- annihilation data. The expected statistical precision of such measurements is extrapolated to 10 fb1^{-1} and potential systematic uncertainties are approximated given the deviations between true and reconstructed yields. The impact on the knowledge of the Sivers functions, transversity and tensor charges, and the Collins function has then been evaluated in the same phenomenological extractions as in the Yellow Report. The impact is found to be comparable to that obtained with the parameterized Yellow Report detector and shows that the ECCE detector configuration can fulfill the physics goals on these quantities.Comment: 22 pages, 22 figures, to be submitted to joint ECCE proposal NIM-A volum

    Open Heavy Flavor Studies for the ECCE Detector at the Electron Ion Collider

    Get PDF
    The ECCE detector has been recommended as the selected reference detector for the future Electron-Ion Collider (EIC). A series of simulation studies have been carried out to validate the physics feasibility of the ECCE detector. In this paper, detailed studies of heavy flavor hadron and jet reconstruction and physics projections with the ECCE detector performance and different magnet options will be presented. The ECCE detector has enabled precise EIC heavy flavor hadron and jet measurements with a broad kinematic coverage. These proposed heavy flavor measurements will help systematically study the hadronization process in vacuum and nuclear medium especially in the underexplored kinematic region.Comment: Open heavy flavor studies with the EIC reference detector design by the ECCE consortium. 11 pages, 11 figures, to be submitted to the Nuclear Instruments and Methods
    corecore