We performed feasibility studies for various single transverse spin
measurements that are related to the Sivers effect, transversity and the tensor
charge, and the Collins fragmentation function. The processes studied include
semi-inclusive deep inelastic scattering (SIDIS) where single hadrons (pions
and kaons) were detected in addition to the scattered DIS lepton. The data were
obtained in {\sc pythia}6 and {\sc geant}4 simulated e+p collisions at 18 GeV
on 275 GeV, 18 on 100, 10 on 100, and 5 on 41 that use the ECCE detector
configuration. Typical DIS kinematics were selected, most notably Q2>1
GeV2, and cover the x range from 10−4 to 1. The single spin
asymmetries were extracted as a function of x and Q2, as well as the
semi-inclusive variables z, and PT. They are obtained in azimuthal moments
in combinations of the azimuthal angles of the hadron transverse momentum and
transverse spin of the nucleon relative to the lepton scattering plane. The
initially unpolarized MonteCarlo was re-weighted in the true kinematic
variables, hadron types and parton flavors based on global fits of fixed target
SIDIS experiments and e+e− annihilation data. The expected statistical
precision of such measurements is extrapolated to 10 fb−1 and potential
systematic uncertainties are approximated given the deviations between true and
reconstructed yields. The impact on the knowledge of the Sivers functions,
transversity and tensor charges, and the Collins function has then been
evaluated in the same phenomenological extractions as in the Yellow Report. The
impact is found to be comparable to that obtained with the parameterized Yellow
Report detector and shows that the ECCE detector configuration can fulfill the
physics goals on these quantities.Comment: 22 pages, 22 figures, to be submitted to joint ECCE proposal NIM-A
volum