43 research outputs found

    Korean women’s activities for legislation to guarantee gender equality in employment

    Get PDF
    This paper examines from the perspective of feminist jurisprudence how Korean women have pursued law reform for securing gender equality in employment. It stresses that legislation for these purposes in Korea has mainly been propelled by the cooperative activities of women workers, many activists of womenorganizations, and feminist law scholars. It demonstrates their movements for amending or enacting laws such as the Constitution, Labor Standards Act, and Gender Equality Act in Employment as leading cases among those various activities, Also, it shows the current legislative tasks women are struggling for

    Carbon nanotubes for ultrafast fibre lasers

    Get PDF
    Carbon nanotubes (CNTs) possess both remarkable optical properties and high potential for integration in various photonic devices. We overview, here, recent progress in CNT applications in fibre optics putting particular emphasis on fibre lasers. We discuss fabrication and characterisation of different CNTs, development of CNT-based saturable absorbers (CNT-SA), their integration and operation in fibre laser cavities putting emphasis on state-of-the-art fibre lasers, mode locked using CNT-SA. We discuss new design concepts of high-performance ultrafast operation fibre lasers covering ytterbium (Yb), bismuth (Bi), erbium (Er), thulium (Tm) and holmium (Ho)-doped fibre lasers

    Boosting the Transesterification Reaction by Adding a Single Na Atom into g-C<sub>3</sub>N<sub>4</sub> Catalyst for Biodiesel Production: A First-Principles Study

    No full text
    Increasing environmental problems and the energy crisis have led to interest in the development of alternative energy. One of the most promising sustainable alternatives to fossil fuel is biodiesel which is typically produced from the transesterification of refined vegetable oils using a homogeneous base catalyst. However, the current process limitations and steep production costs associated with the use of homogeneous catalysts have limited the global-wide acceptance of biodiesel. Heterogeneous catalysts have been considered suitable alternatives, but they still suffer from low catalytic activity. In this study, by using density functional theory (DFT) calculations, we examined the electronic and catalytic activity of the single Na-doped graphitic carbon nitrides (indicated by Na-doped g-C3N4) toward the efficient biodiesel (acetic acid methyl ester) production via the transesterification of triglyceride (triacetin). Our DFT calculation on reaction energetics and barriers revealed the enhancement of biodiesel productivity in the Na-doped catalyst compared to the pristine g-C3N4 catalyst. This was related to the large reduction of the barrier in the rate-limiting step. In addition, we investigated the acidity/basicity and electron distribution and density of state for the Na-doped and pristine g-C3N4 catalysts to better understand the role of the Na atom in determining the transesterification reaction. This study highlights the importance of the dopant in a g-C3N4 catalyst in determining the transesterification reaction, which may open new routes to improve biodiesel production

    Increased low- and high-frequency oscillatory activity in the prefrontal cortex of fibromyalgia patients

    No full text
    Recent human neuroimaging studies have suggested that fibromyalgia (FM), a chronic widespread pain disorder, exhibits altered thalamic structure and function. Since the thalamus has extensive reciprocal connection with the cortex, structural and functional thalamic alterations in FM might be linked to aberrant thalamocortical oscillation. This study investigated the presence of abnormal brain rhythmicity in low- and high-frequency bands during resting state in patients with FM and their relationship to clinical pain symptom. Spontaneous magnetoencephalography activity was recorded in 18 females with FM and 18 age- and sex-matched healthy control subjects. The most remarkable finding was that FM patients had general increases in theta, beta and gamma power along with a slowing of the dominant alpha peak. Increased spectral powers in the theta-band were primarily localized to the left dorsolateral prefrontal (DLPFC) and orbitofrontal cortex (OFC). Beta and gamma over-activation were localized to insular, primary motor and primary and secondary somatosensory cortices, as well as the DLPFC and OFC. Furthermore, enhanced high-frequency oscillatory activities in the DLPFC and OFC were associated with higher affective pain scores in patients with FM. Our results demonstrate that FM patients feature enhanced low- and high-frequency oscillatory activity in the brain areas related to cognitive and emotional modulation of pain. Increased low- and high-frequency activity of the prefrontal cortex may contribute to persistent perception of pain in FM. Therapeutic intervention based on manipulating neural oscillation to restore normal thalamocortical rhythmicity may be beneficial to pain relief in FM
    corecore