930 research outputs found

    A Gravitational Redshift Determination of the Mean Mass of White Dwarfs. DA Stars

    Get PDF
    We measure apparent velocities (v_app) of the Halpha and Hbeta Balmer line cores for 449 non-binary thin disk normal DA white dwarfs (WDs) using optical spectra taken for the ESO SN Ia Progenitor surveY (SPY; Napiwotzki et al. 2001). Assuming these WDs are nearby and co-moving, we correct our velocities to the Local Standard of Rest so that the remaining stellar motions are random. By averaging over the sample, we are left with the mean gravitational redshift, : we find = = 32.57 +/- 1.17 km/s. Using the mass-radius relation from evolutionary models, this translates to a mean mass of 0.647 +0.013 -0.014 Msun. We interpret this as the mean mass for all DAs. Our results are in agreement with previous gravitational redshift studies but are significantly higher than all previous spectroscopic determinations except the recent findings of Tremblay & Bergeron (2009). Since the gravitational redshift method is independent of surface gravity from atmosphere models, we investigate the mean mass of DAs with spectroscopic Teff both above and below 12000 K; fits to line profiles give a rapid increase in the mean mass with decreasing Teff. Our results are consistent with no significant change in mean mass: ^hot = 0.640 +/- 0.014 Msun and ^cool = 0.686 +0.035 -0.039 Msun.Comment: Accepted for publication in ApJ, 14 pages, 12 figure

    Hubble Space Telescope Spectroscopy of the Balmer lines in Sirius B

    Full text link
    Sirius B is the nearest and brightest of all white dwarfs, but it is very difficult to observe at visible wavelengths due to the overwhelming scattered light contribution from Sirius A. However, from space we can take advantage of the superb spatial resolution of the Hubble Space Telescope to resolve the A and B components. Since the closest approach in 1993, the separation between the two stars has become increasingly favourable and we have recently been able to obtain a spectrum of the complete Balmer line series for Sirius B using HST?s Space Telescope Imaging Spectrograph (STIS). The quality of the STIS spectra greatly exceed that of previous ground-based spectra, and can be used to provide an important determination of the stellar temperature (Teff = 25193K) and gravity (log g = 8.556). In addition we have obtained a new, more accurate, gravitational red-shift of 80.42 +/- 4.83 km s-1 for Sirius B. Combining these results with the photometric data and the Hipparcos parallax we obtain new determinations of the stellar mass for comparison with the theoretical mass-radius relation. However, there are some disparities between the results obtained independently from log g and the gravitational redshift which may arise from flux losses in the narrow 50x0.2arcsec slit. Combining our measurements of Teff and log g with the Wood (1995) evolutionary mass-radius relation we get a best estimate for the white dwarf mass of 0.978 M. Within the overall uncertainties, this is in agreement with a mass of 1.02 M obtained by matching our new gravitational red-shift to the theoretical M/R relation.Comment: 11 pages, 6 figures, accepted for publication in the Monthly Notices of the Royal Astronomical Societ

    Supernova Simulations and Strategies For the Dark Energy Survey

    Get PDF
    We present an analysis of supernova light curves simulated for the upcoming Dark Energy Survey (DES) supernova search. The simulations employ a code suite that generates and fits realistic light curves in order to obtain distance modulus/redshift pairs that are passed to a cosmology fitter. We investigated several different survey strategies including field selection, supernova selection biases, and photometric redshift measurements. Using the results of this study, we chose a 30 square degree search area in the griz filter set. We forecast 1) that this survey will provide a homogeneous sample of up to 4000 Type Ia supernovae in the redshift range 0.05<z<1.2, and 2) that the increased red efficiency of the DES camera will significantly improve high-redshift color measurements. The redshift of each supernova with an identified host galaxy will be obtained from spectroscopic observations of the host. A supernova spectrum will be obtained for a subset of the sample, which will be utilized for control studies. In addition, we have investigated the use of combined photometric redshifts taking into account data from both the host and supernova. We have investigated and estimated the likely contamination from core-collapse supernovae based on photometric identification, and have found that a Type Ia supernova sample purity of up to 98% is obtainable given specific assumptions. Furthermore, we present systematic uncertainties due to sample purity, photometric calibration, dust extinction priors, filter-centroid shifts, and inter-calibration. We conclude by estimating the uncertainty on the cosmological parameters that will be measured from the DES supernova data.Comment: 46 pages, 30 figures, resubmitted to ApJ as Revision 2 (final author revision), which has subtle editorial differences compared to the published paper (ApJ, 753, 152). Note that this posting includes PDF only due to a bug in either the latex macros or the arXiv submission system. The source files are available in the DES document database: http://des-docdb.fnal.gov/cgi-bin/ShowDocument?docid=624

    An upper limit on the electron-neutrino flux from the HiRes detector

    Full text link
    Air-fluorescence detectors such as the High Resolution Fly's Eye (HiRes) detector are very sensitive to upward-going, Earth-skimming ultrahigh energy electron-neutrino-induced showers. This is due to the relatively large interaction cross sections of these high-energy neutrinos and to the Landau-Pomeranchuk-Migdal (LPM) effect. The LPM effect causes a significant decrease in the cross sections for bremsstrahlung and pair production, allowing charged-current electron-neutrino-induced showers occurring deep in the Earth's crust to be detectable as they exit the Earth into the atmosphere. A search for upward-going neutrino-induced showers in the HiRes-II monocular dataset has yielded a null result. From an LPM calculation of the energy spectrum of charged particles as a function of primary energy and depth for electron-induced showers in rock, we calculate the shape of the resulting profile of these showers in air. We describe a full detector Monte Carlo simulation to determine the detector response to upward-going electron-neutrino-induced cascades and present an upper limit on the flux of electron-neutrinos.Comment: 13 pages, 3 figures. submitted to Astrophysical Journa

    Interplane Transport and Superfluid Density in Layered Superconductors

    Full text link
    We report on generic trends in the behavior of the interlayer penetration depth λc\lambda_c of several different classes of quasi two-dimensional superconductors including cuprates, Sr2_2RuO4_4, transition metal dichalcogenides and organic materials of the (BEDTTTF)2X(BEDT-TTF)_2X-series. Analysis of these trends reveals two distinct patterns in the scaling between the values of λc\lambda_c and the magnitude of the DC conductivity: one realized in the systems with a Fermi liquid (FL) ground state and the other seen in systems with a marked deviation from the FL response. The latter pattern is found primarily in under-doped cuprates and indicates a dramatic enhancement (factor 102\simeq 10^2) of the energy scale ΩC\Omega_C associated with the formation of the condensate compared to the data for the FL materials. We discuss implications of these results for the understanding of pairing in high-TcT_c cuprates.Comment: 4 pages, 2 figure

    Search for Global Dipole Enhancements in the HiRes-I Monocular Data above 10^{18.5} eV

    Full text link
    Several proposed source models for Ultra-High Energy Cosmic Rays (UHECRs) consist of dipole distributions oriented towards major astrophysical landmarks such as the galactic center, M87, or Centaurus A. We use a comparison between real data and simulated data to show that the HiRes-I monocular data for energies above 10^{18.5} eV is, in fact, consistent with an isotropic source model. We then explore methods to quantify our sensitivity to dipole source models oriented towards the Galactic Center, M87, and Centaurus A.Comment: 17 pages, 31 figure

    Search for Correlations between HiRes Stereo Events and Active Galactic Nuclei

    Full text link
    We have searched for correlations between the pointing directions of ultrahigh energy cosmic rays observed by the High Resolution Fly's Eye experiment and Active Galactic Nuclei (AGN) visible from its northern hemisphere location. No correlations, other than random correlations, have been found. We report our results using search parameters prescribed by the Pierre Auger collaboration. Using these parameters, the Auger collaboration concludes that a positive correlation exists for sources visible to their southern hemisphere location. We also describe results using two methods for determining the chance probability of correlations: one in which a hypothesis is formed from scanning one half of the data and tested on the second half, and another which involves a scan over the entire data set. The most significant correlation found occurred with a chance probability of 24%.Comment: 13 pages, 1 table, 5 figure
    corecore