313 research outputs found
Research on chemical constituents, anti-bacterial and anti-cancer effects of components isolated from Zingiber officinale Roscoe from Vietnam
Ginger, a commonly used spice and medicinal herb, is an abundant source of bioactive compounds. However, the utilization of ginger in the pharmaceutical industry is still moderate and not commensurate with the potential of the Vietnamese horticulture industry, mainly due to a lack of information about the quality of input materials. In this study, we compared the volatile compounds of gingers collected from 13 provinces of Vietnam using GC/MS and GC-FID analysis to provide a basis for selecting and standardizing input materials. Furthermore, ginger essential oil from Ben Tre province of Vietnam exhibited significant antibacterial activity particularly in inhibiting Gram-positive bacteria, including S. aureus and S. epidermidis, with inhibition zones of 30.00 ± 1.41 and 24.67 ± 3.30 mm, respectively. However, no significant inhibition was observed against Gram-negative bacteria P. aeruginosa and E. coli. We also isolated 5 non-volatile compounds from ginger extract, namely 6-shogaol (1), quercetin (2), rutin (3), beta-sitosterol (4) and beta-sitosterol-3-O-beta-D-glucopyranoside (5). Among them, compounds 1–3 displayed cytotoxicity against Hep3B, SK-LU-1, MCF-7, SK-LU-1, SW480 and HepG2 tumour cell lines, with an IC50 values ranging between 62.7 ± 2.1 and 97.6 ± 1.1 µM, using Ellipticine as a positive control. Compounds 4 and 5 showed cytotoxicity against Hep3B and HepG2 tumor cells, with the IC50 values ranging between 21.5 ± 5.1 and 46.9 ± 3.7 µM but did not exhibit any significant cytotoxicity against SW480 and SK-LU-1 cells. Compound 4 also demonstrated middling cytotoxicity against the MCF7 cell line, with an IC50 value of 43.6 ± 5.1 µM. These findings suggest further applications of Vietnamese ginger for the treatment of infectious and cancer-related diseases
Insulin signaling and its application
The discovery of insulin in 1921 introduced a new branch of research into insulin activity and insulin resistance. Many discoveries in this field have been applied to diagnosing and treating diseases related to insulin resistance. In this mini-review, the authors attempt to synthesize the updated discoveries to unravel the related mechanisms and inform the development of novel applications. Firstly, we depict the insulin signaling pathway to explain the physiology of insulin action starting at the receptor sites of insulin and downstream the signaling of the insulin signaling pathway. Based on this, the next part will analyze the mechanisms of insulin resistance with two major provenances: the defects caused by receptors and the defects due to extra-receptor causes, but in this study, we focus on post-receptor causes. Finally, we discuss the recent applications including the diseases related to insulin resistance (obesity, cardiovascular disease, Alzheimer’s disease, and cancer) and the potential treatment of those based on insulin resistance mechanisms
Two plant-associated Bacillus velezensis strains selected after genome analysis, metabolite profiling, and with proved biocontrol potential, were enhancing harvest yield of coffee and black pepper in large field trials
Elimination of chemically synthesized pesticides, such as fungicides and nematicides, in agricultural products is a key to successful practice of the Vietnamese agriculture. We describe here the route for developing successful biostimulants based on members of the Bacillus subtilis species complex. A number of endospore-forming Gram-positive bacterial strains with antagonistic action against plant pathogens were isolated from Vietnamese crop plants. Based on their draft genome sequence, thirty of them were assigned to the Bacillus subtilis species complex. Most of them were assigned to the species Bacillus velezensis. Whole genome sequencing of strains BT2.4 and BP1.2A corroborated their close relatedness to B. velezensis FZB42, the model strain for Gram-positive plant growth-promoting bacteria. Genome mining revealed that at least 15 natural product biosynthesis gene clusters (BGCs) are well conserved in all B. velezensis strains. In total, 36 different BGCs were identified in the genomes of the strains representing B. velezensis, B. subtilis, Bacillus tequilensis, and Bacillus. altitudinis. In vitro and in vivo assays demonstrated the potential of the B. velezensis strains to enhance plant growth and to suppress phytopathogenic fungi and nematodes. Due to their promising potential to stimulate plant growth and to support plant health, the B. velezensis strains TL7 and S1 were selected as starting material for the development of novel biostimulants, and biocontrol agents efficient in protecting the important Vietnamese crop plants black pepper and coffee against phytopathogens. The results of the large-scale field trials performed in the Central Highlands in Vietnam corroborated that TL7 and S1 are efficient in stimulating plant growth and protecting plant health in large-scale applications. It was shown that treatment with both bioformulations resulted in prevention of the pathogenic pressure exerted by nematodes, fungi, and oomycetes, and increased harvest yield in coffee, and pepper.Peer Reviewe
HPTLC Fingerprinting and Cytotoxicity of Secondary Metabolites of Equisetum Diffusum D. Don Extracts
peer reviewedThe aerial parts of Equisetum diffusum D.Don
(Equisetaceae ED), a Vietnamese folk medicine used
for hypertensive, anti-inflammatory, diuretic and
hemostatic properties, were collected in Northern
Vietnam. The secondary metabolites of the sequential
n-hexane, ethyl acetate and methanol extracts were
profiled by HPTLC with chromatographic conditions
and derivatization reagents characteristic for
flavonoids, polyphenols and terpenoids/steroids.
All these metabolite classes were present in the
methanol extract whereas the ethyl acetate extract
comprised some polyphenols and flavonoids; no
characteristic compound class could be identified in
the n-hexane extract. HPLC allowed to determine the
concentration of isoquercitroside, the major flavonoid
of the methanol extract (1.60 ± 0.04 mg/g dry weight;
n=3)
Spatiotemporal evolution of SARS-CoV-2 Alpha and Delta variants during large nationwide outbreak of COVID-19, Vietnam, 2021
We analyzed 1,303 SARS-CoV-2 whole-genome sequences from Vietnam, and found the Alpha and Delta variants were responsible for a large nationwide outbreak of COVID-19 in 2021. The Delta variant was confined to the AY.57 lineage and caused >1.7 million infections and >32,000 deaths. Viral transmission was strongly affected by nonpharmaceutical interventions
Multidrug resistance plasmids underlie clonal expansions and international spread of Salmonella enterica serotype 1,4,[5],12:i:- ST34 in Southeast Asia
Salmonella enterica serotype 1,4,[5],12:i:- (Typhimurium monophasic variant) of sequence type (ST) 34 has emerged as the predominant pandemic genotype in recent decades. Despite increasing reports of resistance to antimicrobials in Southeast Asia, Salmonella ST34 population structure and evolution remained understudied in the region. Here we performed detailed genomic investigations on 454 ST34 genomes collected from Vietnam and diverse geographical sources to elucidate the pathogen’s epidemiology, evolution and antimicrobial resistance. We showed that ST34 has been introduced into Vietnam in at least nine occasions since 2000, forming five co-circulating major clones responsible for paediatric diarrhoea and bloodstream infection. Most expansion events were associated with acquisitions of large multidrug resistance plasmids of IncHI2 or IncA/C2. Particularly, the self-conjugative IncA/C2 pST34VN2 (co-transferring blaCTX-M-55, mcr-3.1, and qnrS1) underlies local expansion and intercontinental spread in two separate ST34 clones. At the global scale, Southeast Asia was identified as a potential hub for the emergence and dissemination of multidrug resistant Salmonella ST34, and mutation analysis suggests of selection in antimicrobial responses and key virulence factors
Cysteine string protein 1 (CSP1) modulates insulin sensitivity by attenuating glucose transporter 4 (GLUT4) vesicle docking with the plasma membrane
Insulin stimulates glucose transporter 4 (GLUT4) vesicle recruitment from its intracellular storage site to the plasma membrane. Cysteine string protein 1 (CSP1) is a SNARE-binding protein involved in the vesicular trafficking of neurotransmitters and other exocytic processes. In this study, we investigated the involvement of CSP1 in insulin-dependent GLUT4 recruitment in 3T3-L1 adipocytes. Over-expression of wild-type CSP1 led to attenuated insulin-stimulated glucose uptake without any change in GLUT4 content in the plasma membrane, rather it inhibits docking by blocking the association of VAMP2 with syntaxin 4. In contrast, knockdown of CSP1 enhanced insulin-stimulated glucose uptake. The mRNA and protein expression of CSP1 was elevated in 3T3-L1 adipocytes in insulin resistant states caused by high levels of palmitate and chronic insulin exposure. Taken together, the results of this study suggest that CSP1 is involved in insulin resistance by interrupting GLUT4 vesicle docking with the plasma membrane
Multidrug resistance plasmids underlie clonal expansions and international spread of Salmonella enterica serotype 1,4,[5],12:i:- ST34 in Southeast Asia
Salmonella enterica serotype 1,4,[5],12:i:- (Typhimurium monophasic variant) of sequence type (ST) 34 has emerged as the predominant pandemic genotype in recent decades. Despite increasing reports of resistance to antimicrobials in Southeast Asia, Salmonella ST34 population structure and evolution remained understudied in the region. Here we performed detailed genomic investigations on 454 ST34 genomes collected from Vietnam and diverse geographical sources to elucidate the pathogen’s epidemiology, evolution and antimicrobial resistance. We showed that ST34 has been introduced into Vietnam in at least nine occasions since 2000, forming five co-circulating major clones responsible for paediatric diarrhoea and bloodstream infection. Most expansion events were associated with acquisitions of large multidrug resistance plasmids of IncHI2 or IncA/C2. Particularly, the self-conjugative IncA/C2 pST34VN2 (co-transferring bla CTX-M-55, mcr-3.1, and qnrS1) underlies local expansion and intercontinental spread in two separate ST34 clones. At the global scale, Southeast Asia was identified as a potential hub for the emergence and dissemination of multidrug resistant Salmonella ST34, and mutation analysis suggests of selection in antimicrobial responses and key virulence factors
- …