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The discovery of insulin in 1921 introduced a new branch of research into insulin

activity and insulin resistance. Many discoveries in this field have been applied to

diagnosing and treating diseases related to insulin resistance. In this mini-review,

the authors attempt to synthesize the updated discoveries to unravel the related

mechanisms and inform the development of novel applications. Firstly, we depict

the insulin signaling pathway to explain the physiology of insulin action starting at

the receptor sites of insulin and downstream the signaling of the insulin signaling

pathway. Based on this, the next part will analyze the mechanisms of insulin

resistance with two major provenances: the defects caused by receptors and the

defects due to extra-receptor causes, but in this study, we focus on post-

receptor causes. Finally, we discuss the recent applications including the

diseases related to insulin resistance (obesity, cardiovascular disease,

Alzheimer’s disease, and cancer) and the potential treatment of those based

on insulin resistance mechanisms.

KEYWORDS
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1 Introduction

Insulin signaling beginning at its receptors produces multidirectional impacts on the

metabolism, survival, and proliferation of targeted cells. Insulin transduces its effects by

insulin receptors that signal through many pathways including participation in protein and

lipid phosphorylation, management of trafficking procedures, management of a system of

enzymes, and control of a system of transcriptional factors. Numerous studies have

indicated that insulin resistance is related to many diseases: type 2 diabetes, obesity,

cardiovascular disease, Alzheimer’s disease, and cancer, which are the medical challenges in

the first century of the new millennium (1–3). Therefore, it is necessary to update the

physiology of insulin signaling and the disordered physiological processes associated with
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insulin resistance, henceforth proposing more effective therapies for

treating diseases related to insulin resistance.
2 Insulin signaling pathway

The insulin signaling pathway is an intracellular signaling

pathway that is responsible for the metabolism of the body,

especially in metabolism, growth, and survival. The process of

the insulin signaling pathway comprises several steps, wherein

the initial stage is the participation of insulin and insulin-like

growth factors (IGF) which bind to insulin and IGF receptors.

The second step is binding an insulin receptor (IR) to its direct

substrates including Growth factor receptor-bound protein 2

(GRB2), Src homology 2 domain-containing (SHC), insulin

receptor substrate (IRS), SH2B adapter protein 2/adapter

protein with a PH and SH2 domain (SH2B2/APS), and Growth

factor receptor-bound protein 10 (GRB10). This binding could

exert several cellular signaling pathways for mitogenesis and

metabolism. Our review will briefly unravel every step of the

insulin signaling pathway (2) (Figure 1).

Insulin is classified in the peptide hormone group that is

secreted from beta cells in the islet of Langerhans of the pancreas.

In mammals, apart from insulin, IGF-1 and IGF-2 are also

synthesized by the insulin gene family. Insulin could bind to the

specific receptors on target cells and exert the metabolic response.

Similarly, IGF-1 and IGF-2 would trigger the mitogenic response,

and promote proliferation and differentiation of cells (4, 5).

Nevertheless, these functional distinctions are blurry due to the

high similarity between the insulin and IGF receptors and are

common in many downstream effectors (3, 6). Therefore, there is

a relationship between hyperinsulinemia and neurodegeneration,

cardiovascular disease, and several cancers (7–9).

IR is a heterotetrameric receptor tyrosine kinase that was

formed by four subunits composed of two extracellular a
subunits and two transmembrane b subunits. Owing to this

structure, IR has two isoforms, A and B, and there are several

differences between them. IR-A, generated by the splicing out of

exon 11 that leads to the absence of 12 amino acids at the carboxyl

terminus of the a subunit, is highly expressed during fetal life and

has more potency in metabolism, promoting glycogenesis

compared to IR-B. IR-B is differentiated by alternative splicing

and includes an additional 12-amino acid sequence encoded by

exon 11 at the C-terminal of the a subunit; the corresponding

sequence in type 1 IGF is vacant. The presence of IR-B in the liver,

muscle, and white adipocyte tissue is more predominant than IR-A

due to the high affinity of IR-B compared to IR-A (6, 10, 11).

Insulin binding to IR creates trans-autophosphorylation into

IR, which is an essential event for the recruitment of IR’s direct

substrates. These substrates bind to IR by the bindings between the

phosphotyrosine-binding (PTB) domain of the substrates and the

tyrosine residues of IR. The downstream signaling of IR activation

comprises two parts: metabolic and mitogenic signals. The

metabolic signals need a lower insulin concentration to be

triggered compared to the mitogenic signals (2, 3).
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2.1 The metabolic response

The metabolic arm of insulin signaling is initiated by IRS and

SH2B2/APS (2). Together, these pathways warrant the effective

translocation of glucose transporter type 4 (GLUT4) to the

membrane by adapting signaling platforms at the cell surface

which are composed of lipids, protein kinases, small GTPases,

and adaptor proteins. To be specific, GLUT4 is in the GLUT

family of transmembrane hexose transporter, which has a high

attractiveness to glucose, and the majority of it is expressed

in muscle cells and adipocytes (12). The translocation of GLUT4

in response to insulin or exercise results in a ten-fold increase in

glucose uptake (13); when insulin is absent, only approximately 5%

of the total GLUT4 is found on the membrane (14, 15). GLUT4

trafficking has a key role in the maintenance of glucose homeostasis

by preventing gluconeogenesis in the liver and promoting glucose

uptake into the muscle and adipose tissues, but it depends on the

response to insulin and coordination of insulin signaling (PI3K

signaling pathway and APS signaling pathway) in every step of

GLUT4 trafficking, including GLUT4 endocytosis, GLUT4 sorting

and retention, and exocytosis of GLUT4 storage vesicles

(GSVs) (12).

The best-unraveled substrate for the role of IR scaffolds is IRS.

The IRS family has six members, wherein IRS1 and IRS2 are

claimed to mediate virtually the metabolic responses of IR

activation. IRS has NH2-terminal pleckstrin homology (PH) and

phosphotyrosine-binding domains (PTB domains) which are

responsible for guiding them to activate IR. After binding to IR,

the IRS tyrosine residues are phosphorylated which enlist

downstream effectors to enhance the insulin response (16).

Particularly, phosphorylated IRS attract phosphoinositide-3-

kinase (PI3K) heterodimers containing a regulatory subunit with

SH2 domain (p85) and a catalytic subunit (p110) that stimulate

glucose transport (17, 18). Besides, PI3K catalyzes the reaction,

converting phosphatidylinositol-4,5-biphosphate (PIP2) to

phosphatidylinositol-3,4,5-triphosphate (PIP3). On the contrary,

phosphatase and tensin homolog deleted on chromosome 10

(PTEN) catalyze the reverse reaction. Interestingly, insulin could

block the activity of PTEN by obscure mechanisms, which may be

explained by the interactions with phosphatidylinositol 3,4,5-

trisphosphate-dependent Rac exchanger 2 (P-REX2) through two

joints, i.e., PH domain of P-REX2 binding to the catalytic region

of PTEN and the inositol polyphosphate 4-phosphatase domain of

P-REX2 interacting with the postsynaptic density-95/Discs large/

zona occludens-1-binding domain of PTEN. These interactions

request the phosphorylation of the C-terminal of PTEN to

discharge the PH domain of P-REX2 from its adjoining diffuse B-

cell lymphoma homology domain (19). Therefore, activating PI3K

as well as inhibiting PTEN by insulin leads to the accumulation of

PIP3. PIP3 then pulls in proteins with PH domains to the plasma

membrane including phosphoinositide-dependent kinase 1 (PDK1)

and Protein kinase B/AKT. PDK1 phosphorylates AKT in its

activation loop after binding to PIP3, and the mechanistic target

of rapamycin complex 2 (mTORC2) phosphorylates its

hydrophobic motif (20–22). AKT is a bridge protein that
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connects insulin signaling to downstream effectors of GLUT4

trafficking. It is involved in glucose absorption in the muscle and

adipose tissue and increases intracellular glucose production (12,

23). AKT promotes GLUT4 storage vesicle (GSV) exocytosis by

phosphorylating and dephosphorylating RAB GAP AS160 (also

known as TBC1 domain family member 4, TBC1D4) and the RAL-

GTPase-activating protein complex (RAL-GAP complex, RGC),

which control small GTPases involved in GSV retention and

localization to the cell surface. Particularly, RAB GAP AS160 is

necessary for insulin activation of GLUT4 exocytosis. The evidence

supporting this process is that the inhibitory-induced mutant of

AS160 inhibits insulin activation of exocytosis at a prior step of the

fusion of GSVs with the cell membrane. Nevertheless, this mutant

does not constrain insulin-induced inhibition of GLUT4

endocytosis. RGC is a complex, including an RGC1 regulatory

subunit and an RGC2 catalytic subunit, which directly activates the

guanosine triphosphate hydrolysis of RalA, whereas the small

GTPase RalA downstream of PI3K plays the role as an essential

part of redistribution of GLUT4 by marshalling the exocyst complex

for GLUT4 vesicle targeting in adipocytes. Thus, RGC complex

regulates the transport machineries responsible for GLUT4

translocation, connecting with PI3K signal (12, 24, 25).

Another pathway of metabolic insulin response is the APS-insulin

signaling pathway. Activated IR recruits APS, which contain PH and

Src homology 2 (SH2) domains and is so also known as SH2B2, with

high affinity. Following that, APS pulls in a complex that includes the

proto-oncogene c-CBL and c-CBL-associated protein (CAP) and

phosphorylate c-CBL (12, 26). Activated c-CBL recruits CRK, which

is a complex with the guanine nucleotide exchange factor (GEF) C3G

to the plasma membrane, then C3G activates TC10, a member of the
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RHO-family of small GTPases (12, 27, 28). GTP-bound TC10

interacts with the exocyst tethering complex, resulting in GSV sites

docking at the cell surface. Apart from that, TC10 also binds to

CDC42-interacting protein 4 (CIP4), forming a stable complex with

Rab GEF GAPex5 and regulating the activity of Rab5 family GTPases

involved in GSV retention and delivery (12).
2.2 The mitogenic response

The second major response of insulin signaling is mitogenic

action. In this pathway, insulin acts as a growth factor although it is

a considerably weaker mitogen than its cousins, the IGF, and other

relatives such as platelet-derived growth factor (PDGF), vascular

endothelial growth factor (VEGF), and EGF. It has been considered

to be the most anabolic hormone that governs proliferation and

migration, and it also inhibits apoptosis (3, 29–31). The mitogenic

action is triggered by the binding between IR and SHC protein,

which recruits the GRB2-SOS (son of sevenless) complex. SOS

regulates the exchange of GTP for GDP only when Ras is attached

to the plasma membrane; consequently, SOS GTP loading activates

the Ras protein. Farnesylation of Ras facilitates its translocation to

the cell surface, particularly when farnesyltransferase (FTase)

catalyzes the attachment of a farnesyl moiety to a cysteine residue

of Ras. Simultaneously, with the phosphorylating IR, insulin could

activate FTase, thus increasing the farnesylation of Ras.

Furthermore, insulin-activating FTase requires an intact IR but

not an IGF receptor, implying that this action is driven solely by IR

and does not include the interaction of IR and the IGF receptor. Ras

protein then activates the cascade from Raf protein to the mitogen-
FIGURE 1

Insulin signaling. Insulin binds to IR leading to autophosphorylation of IR; thus, IR could recruit diverse substrates. The two main responses of insulin
signaling are mitogenic signaling (begin with SHC and GRB2 through the ERK1/2 pathway) and metabolic signaling (begin with IRS through the AKT
pathway and SH2B2/APS through CRK/TC10 pathway). The regulation of insulin signaling could be characterized by negative feedback mechanisms,
such as stabilization and recruitment of GRB10 to the IR; activation of lipid phosphatases (PTEN, SHIP1, and SHIP2) that dephosphorylate PIP3; and
activation of several stress kinases (IKK, JNK, S6K, and mTORC1) to phosphorylate and inhibit IR and IRS. Green circles and arrows represent
activating events; red circles and lines represent inhibitory events. pY: phosphorylated tyrosine residue.
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activated protein kinase (MAPK). The activated MAPK,

extracellular signal-regulated kinase (ERK1/2, also referred to as

p44/p42 MAPK), is a key effector of the insulin mitogenic signal

that promotes cell growth, cell division, migration, and apoptosis (3,

30). ERK1/2 activates a pleiotropy of substrates (approximately 200

different substrates have been identified), including cytosolic targets

(PLA2, Raf-1, Caspase-9, Bcl-2, etc.) and cytoskeletal targets

(MAP2, MAP4, Tau, etc.) which regulate specific activities within

certain organelles, such as transcription in the nucleus and

mitochondria, and bring components of the ERK1/2 cascade into

proper localizations where it phosphorylates specific proteins

without remarkable nuclear translocation. Half of the currently

identified ERK1/2 substrates are nuclear targets including Elk-1, c-

Myc, c-Fos, and HIF-1a, which regulate many stimulated nuclear

processes, such as transcription, chromatin remodeling, and nuclear

translocation (32, 33). Evidence of these effects of the ERK1/2

pathway was found in a variety of tissues, including the adipose

tissue, muscle, and pancreatic beta-cells. ERK-1 signaling has been

shown to promote adipogenesis, and ERK-1 knockdown animals

had decreased adipose mass (3). Pre-adipocytes have very little IR,

but as they move through adipogenesis, their IR levels rise to levels

that are greater than those of IGF-1R. In studies using cell culture,

high insulin dosages stimulate ERK activation and support the early

proliferative stage of adipogenesis. ERK-1 activity decreases when

adipogenesis increases and IR expression rises, and metabolic

insulin signaling takes over. The IGF-1R stimulation is necessary

to activate ERK and causes adipogenesis that is provided in vivo by

high levels of IGF ligands during embryonic and postnatal growth

and development in FIRKO mice. As adipogenesis expands and IR

expression rises, ERK-1 activation declines, and metabolic insulin

signaling takes over. In vivo, high levels of IGF ligands throughout

embryonic and postnatal growth and development provide the IGF-

1R stimulation required to activate ERK and drive adipogenesis,

and FIRKO mice with IR missing in adipose tissue, nonetheless,

form fat pads (3).
2.3 Regulation of insulin signaling pathway

Insulin signaling is always under tight control due to the fact that

any abnormal signal could exert severe perturbations in metabolism

and tumorigenesis. Hence, rapidly turning off the insulin signal at

various levels is critical. Signaling is attenuated by the activity of

several phosphatases, stress kinases, and adaptor proteins (34).

2.3.1 Phosphoprotein phosphatases
Tyrosine phosphatases comprise transmembrane phosphatases,

such as Leukocyte common antigen-related (LAR) protein and

cytoplasmic protein tyrosine phosphatases, especially PTP1B, that

could dephosphorylate the tyrosine residues on IR and IRS, thus

reducing their actions (2, 34).

The serine/threonine phosphatases comprise protein

phosphatase 1 (PP1) and protein phosphatase 2 (PP2, including

PP2A, PP2B, and PP2C). PP1 controls several types of enzymes

involved in the metabolism of glucose, including glycogen synthase.
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In the PP2 family, multiple protein kinases linked to insulin

function are regulated by PP2A, i.e., AKT, ERK, PP2B, and PP2C

(in particular, the PH domain leucine-rich repeat protein

phosphatases PHLPP-1 and -2) could dephosphorylate AKT.

Thereby, they could induce insulin resistance (35–38).

2.3.2 Lipid phosphatases
Lipid phosphatases, such as PTEN and SH2 domain-containing

inositol 5-phosphatases (SHIP) 1 and 2, could dephosphorylate

PIP3, hence antagonizing PI3K signaling in cells (34, 37, 39).

2.3.3 Stress kinases
The increased serine/threonine phosphorylation of IR or IRS

that has an inhibitor effect on tyrosine kinase activity has been

witnessed in IR in humans, thus inhibiting insulin signaling (34,

40). Multiple kinases including c-Jun amino-terminal kinase (JNK),

inhibitor of kB kinase (IKK), traditional and innovative PKCs but

also mTORC1, and S6 kinase (S6K) could inhibit insulin signaling

by increasing serine/threonine phosphorylation and reducing IRS

tyrosine phosphorylation (2, 34).

2.3.4 Adaptor proteins
Grb10 and Grb14, as well as proteins of the suppressor of

cytokine signaling (SOCS) family (especially SOCS1 and SOCS3),

are negative regulators of the tyrosine kinase activity of the IR,

proving that it has a role in insulating the contact of IR substrates to

the activated receptors. (34)

Tribbles homolog 3 (Trb3) pertains to a family of pseudokinases

that could bind to AKT and block its activation, hence inhibiting

insulin signaling. Besides, inositol phosphate IP7 could inhibit AKT

translocation to the cell surface, thus attenuating insulin

signaling (34).

3 Insulin resistance mechanism

Insulin resistance is typical with a state when plasma insulin is

at a normal range; however, target tissues cannot exert a

physiological response of glucose-lowering, implicating the

inhibition of gluconeogenesis, lipolysis, cellular glucose uptake,

and glyconeogenesis (2, 41). The state of insulin resistance

commands enhanced insulin secretion to recompense; hence,

fasting plasma insulin is in high concentrations (42). In this

review, insulin resistance is defined as a curve of responding to

insulin dose with increased EC50 (half maximal effective

concentration), with or without declined maximal response (43).

The physiological mechanism of insulin resistance owes to

deficient insulin action at target cells. To pinpoint the deficiency

of cellular insulin action, a lot of effort has been induced and two

major origins have been indicated: receptor defects (decreased IR

expression at the plasma membrane) and post-receptor defects

(impaired signal transduction) (44). In the case of decreased IR

expression (receptor defects), the dose response increased but the

maximal biological response remained the same at the normal value

unless the IR fell to 5-10% of the normal value. Distinctly, not only
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was there an increase in dose response but the maximal response

also decreased in the case of post-receptor defects (2, 44, 45).

Receptor defects lead to insulin resistance by mutations of IR in

the majority. Mutations of IR exert the type A insulin resistance

syndrome, which occurs in at least 0.05% of the general Japanese

population (46, 47). Apart from that, type B insulin resistance

syndrome causes insulin resistance by autoantibodies blocking the

binding sites of insulin on IR. This syndrome is frequently

accompanied by autoimmune conditions (48). Besides, Rabson–

Mendenhall syndrome and Donohue syndrome are also brought

about by mutations of IR, most of which are in both alleles but are

more serious compared to type A insulin resistance syndrome,

which is usually associated with intractable diabetes (47, 49).

Post-receptor defects comprise abnormalities in metabolic

signals and mitogenic signals; it includes the effects on substrates

and negative modulators of insulin signaling.
3.1 Substrates of insulin signaling

Many single nucleotide polymorphisms (SNPs) and gene

mutations of IRS have been identified that are associated with

decreased insulin signaling. The SNPs G972R, Gly972Arg, and

rs1801278 of IRS-1 have shown a high prevalence in patients with

type 2 diabetes and are caused by disrupted insulin signaling (50–52).

It showed that the T608R mutation was located in the highly

conversed region of IRS-1 that impairs PI 3-kinase activation and

binding, as well as GLUT4 translocation in adipose cells. On the other

hand, the I65S, R66S, and G86R mutations reflexed amino acids in

the phosphotyrosine binding site of the IRS-1 protein. These changes

in amino acids could lead to a shift in binding energies and trigger

conformational variations in the L1 domain of the IR structure.

Besides, in the ligand-binding area of the IR structure, I65S, R66S,

and G86Rmutations of IRS1 structures’ positional displacement were

caused by the observation of variable binding mode orientations. All

of these factors could be reasons for the varied interactions of IRS1

and IR, which lead to aberrant insulin transduction, followed by

insulin resistance (53, 54).

The activity of PI3K depends on an equivalence between the

activities of two subunits: the regulatory and catalytic subunits (55).

In the regulatory subunit, several mutations have shown their

association with signal transduction. The mutations of PIK3R1,

encoding the p85a regulatory subunit of PI3K, including the most

frequent mutation Arg649Trp and 11 other PIK3R1 mutations have

been recognized in patients with SHORT syndrome and genetic

insulin resistance. The majority of the mutations in this syndrome

are in the area encoding the C-terminal SH2 domain of p85, which is

required for PI3K binding to tyrosine-phosphorylated proteins

including insulin receptor and (IR) substrate (IRS-1). The 649

amino acid position on the SH2 domain of the p85 regulatory

subunit is arginine (wild-type) and highly conserved, and it

participates in a bivalent interaction between PI3K and IR or IRS

with the linkage of oxygen atoms of the phosphotyrosine. The

improved link to the phosphopeptide was focused within the
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binding pocket. The mutation Arg649Trp at this location changes

the amino acid sequence from Arginine to Tryptophan, which

decreases affinity to the phosphopeptide (49). Several works of

research have indicated that PIK3R1 mutations are the second

common origin in the rank of single-gene insulin resistance (56–

58). Mutations of PIK3R2, encoding the p85b regulatory subunit of

PI3K, have shown the ability to augment PI3K signaling, which has

been perceived in patients with hypoglycemia and either segmental

overgrowth or megalencephaly (59). Somatic mutations of PIK3CA,

encoding the p110a catalytic subunit of PI3K have been seen

generally in tumor cells and segmental overgrowth tissues less

frequently, while germline mutations of PIK3CA have been

observed in patients with segmental overgrowth or megalencephaly

(59, 60).

AKT substrate includes three isoforms: AKT1, AKT2, and

AKT3; wherein AKT1 and AKT2 are universally occurring, AKT3

is mainly expressed in the central nervous system (2). The

mutations of AKT1 and AKT3 have not shown an association

with insulin sensitivity; however, in contrast, mutations of AKT2

are an identified origin of the monogenic disorder of glucose

metabolism (61). A heterozygous Arg274His mutation of AKT2

gives rise to a blocked impact on insulin activity, which was

observed in patients with severe postprandial hyperinsulinemia

(62). A lower function AKT2 coding variant, p.Pro50Thr, occurs

with high frequency (1.1%) in the Finnish population, and

influences glucose uptake negotiated by insulin in target tissues,

thus escalating the risk of type 2 diabetes in carriers (23, 63).

TBC1D4 is involved in GSV translocation, and its mutations

may affect insulin action. A truncated Arg363Ter mutation was

identified in a family who suffered from postprandial

hyperinsulinemia (64). A homozygous Arg684Ter variant of

TBC1D4, which appeared with a great allele prevalence (17%) in

the Greenlandic population, has shown a remarkable increase in the

risk of the progress of type 2 diabetes (65). Deletion of TBC1D4

generating abolished glucose uptake negotiated by insulin is related

to impaired glycemic control (66).

The variants in PTPN11 are possibly responsible for the

blockage of tyrosine kinase signaling and downstream Ras-MAPK

signaling, hence exerting Noonan syndrome. The individuals

harboring mutations of PTPN11 manifest insulin resistance with

impairment in glucose uptake and glycogen synthesis (67, 68).
3.2 Negative modulators of
insulin signaling

Patients with Cowden syndrome are heterozygous mutations in

PTEN for diminished function and also have elevated insulin

sensitivity. PTEN haploinsufficiency and PTEN deletion

ameliorate insulin sensitivity and defend against systemic insulin

resistance associated with obesity. Besides, the inactivation of PTEN

gives rise to the decreased hyperproliferation of cells (69, 70).

Several factors could exert increased activity of stress kinases

including JNK, IKK, and PKC, thus increasing insulin resistance
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state. Some of these factors include free fatty acids (FFA),

diacylglycerol (DAG), sphingolipid ceramide, hyperglycemia,

reactive oxygen species (ROS), and endoplasmic reticulum (ER)

stress (34).

Obesity has an association with insulin resistance, which is

characterized by the progress of chronic inflammation at a low level

(71). Adipocytes secreting the chemokine MCP-1 promote

macrophage agglomeration into adipose tissues and exert insulin

resistance (72). Several cytokines, such as TNF-a, IL1b, and IL-6,

are secreted by immune cells and adipocytes that give rise to insulin

resistance by increased serine/threonine phosphorylation or

activation of SOCS3 (an adaptor protein) in adipocytes (73, 74).

Interestingly, in the context of insulin resistance, when the

metabolic signals such as PI3K signaling is inhibited, the mitogenic

signals like the Ras-Raf-MAPK pathway of insulin are not

interrupted and are possibly upregulated (75).
4 Applications

Insulin resistance leads to increased insulin secretion to

compensate; this state is known as hyperinsulinemia (42). Insulin

resistance and/or hyperinsulinemia could exert many

complications, such as obesity, cardiovascular disease,

neurodegeneration especially Alzheimer’s disease, and cancer (3).

Indeed, insulin resistance could result in lipoproteins’ profile

alterations. ApoB is a protein that could enhance the assemblage

and excretion of VLDL. Normally, through the PI3K pathway,

insulin controls the deterioration of apoB; however, under insulin

resistance, this process is inadequate. Besides, insulin resistance also

decreases the activity of lipoprotein lipase, which is a dominant

factor in VLDL clearance. Thereby, insulin resistance gives rise to

an escalation in VLDL formation, which accounts for

hypertriglyceridemia under the insulin resistance state (76–79).

Insulin resistance also exerts the synthesis of small dense LDL

(sdLDL) and decreases HDL levels, which are created by the

transferring of VLDL’s triglycerides to LDL and HDL under the

catalysis of cholesteryl ester transfer protein (CETP), provoking

triglyceride-rich LDL and decreasing HDL-C. Triglyceride-rich

LDL is lipolysis by hepatic lipase, leading to the formation of

sdLDL. sdLDL has several properties including lessened affinity

for the LDL receptor, accelerated entry into the arterial wall,

dominant arterial detention, major sensitivity to oxidation, and

greater half-life that promotes the atherogenic activity of sdLDL.

Strikingly, increased sdLDL levels could not be measured by the

LDL levels, due to the lower level of sdLDL than LDL. These

variations of lipoproteins profile are called dyslipidemia, which is

characterized by the lipid trinity: hypertriglyceridemia, low levels of

HDL, and the occurrence of sdLDL, which leads to obesity.

Dyslipidemia is a sturdy predictor of the development of type 2

diabetes, which is owed to insulin resistance and cardiovascular

disease (9, 80–82). A strong association between insulin resistance

and the risk of cardiovascular disease (CVD) has been indicated

(83). Several molecular mechanisms contributing to this correlation
Frontiers in Endocrinology 06
include atherosclerosis development and vascular function (9, 84).

Dyslipidemia is the main reason for atheroma plaque formation.

Besides, insulin resistance could exert vascular abnormality by

activating the MAPK pathway generating vasoconstriction

improvement and inhibiting the NO synthesis which has an

essential role in vascular strength through the ability of

vasodilation (85).

Several studies have revealed that brain insulin resistance, which

means dysregulated brain insulin signaling, is one of the factors of

cognitive disorders and Alzheimer’s disease (AD) and is also

considered a risk factor for sporadic AD development (86, 87).

Indeed, the major pathology of AD including neurofibrillary tangles

(NFT) and amyloid-b plaques could owe to insulin resistance (8).

Firstly, insulin, IGF-1, and IGF-2 have been indicated to have

inhibited activity on apoptosis in brain neurons through IR and

regulate many neurobiological processes, inhibiting the degradation

of amyloid-b (88–90). Moreover, amyloid-b could compete with

insulin for binding to IR, leading to impairment of insulin-binding

affinity to IR, and thus exerting insulin resistance. This state has

been proven to aggravate the already present AD pathology (91).

The increased serine phosphorylation of IRS-1, PI3K pathway

dysfunction, and inhibition of AKT causing stimulation of

Glycogen synthase k inase 3b (GSK-3b ) and mTOR

phosphorylation lead to hyperphosphorylation of tau protein,

which is the main component of NFT. Besides, activated GSK-3b
could enhance the amyloid-b plaque deposition. Both of them may

give rise to microglia-mediated neuroinflammation that produces

AD pathogenesis (92–96). Apart from that, the activation of the

Ras-MAPK pathway enhances the transcription of several

particular genes related to the role of the survival of neurons

which are associated with synaptic plasticity and tau

phosphorylation and are connected with amyloid-b plaques

accumulation and NFT formation, which are major features of

AD (97, 98).

Several investigations have indicated the association between

hyperinsulinemia with the risk of certain types of cancers. This

phenomenon could be analyzed by direct or indirect impacts of

insulin resistance on the development of cancer (3). The direct

impacts due to the overexpression of insulin resistance in specific

tumor cell lines enhance the proliferative response to insulin, and

ERK has been pointed out to be responsible for activating the cell

cycle process in cancer cells (99, 100). The indirect effects account

for the ability of insulin to stimulate increased levels of many

modulators of proliferation and differentiation including IGF-1,

cytokines, and growth factors, such as leptin, VEGF, and IL-6 (101–

103). These effects may accelerate the growth of neoplasms,

angiogenic process, and metastasis, and could be the mechanisms

by which hyperinsulinemia and/or insulin resistance increases the

carcinogenesis risk of many kinds of cancer, such as cancer of the

breast, colon, liver, pancreas, and endometrium (104–107).

Based on these observations, it would seem that IR modulator

therapies are effective in the treatment of diseases related to IR,

especially for those substances that more preferentially stimulate

metabolic signaling (AKT), minimally activate mitogenic responses
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(ERK), and limit insulin-like growth factor receptor (IGFR)

activation (3, 108). Several reports have declared some IR agonist

molecules that would be satisfied to become a safe and efficient IR

agonist (selectively activating the AKT pathway over the ERK

signaling): the peptide S597 and the human monoclonal antibody

XMetA (3, 109, 110).
5 Conclusion

The complications of insulin signaling do not only owe to the

requirement for maintaining the plasma glucose within a narrow

range and the regulation of other metabolic substances but also

control the growth and survival of multiple cells. The ability to

design IR agonists provides variable potencies for treatment. While

extensive investigations have been made, a lot of gaps persist in our

knowledge of the molecular mechanisms involved in insulin

signaling and will stand as the highlight of years of studies. It is

hoped that this review would serve as a resource for assistance in the

progress of more efficient next-generation therapies for diseases

related to insulin resistance.
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